2,147 research outputs found

    Conceptual and numerical models of a tectonically-controlled geothermal system: a case study of the Euganean Geothermal System, Northern Italy

    Get PDF
    The Euganean Geothermal Field (EGF) is the most important thermal field in northern Italy. It is located in the alluvial plain of the Veneto Region where approximately 17*106 m3 of thermal water with temperatures of 60–86 °C are exploited annually. A regional-scale conceptual model of the Euganean Geothermal System is proposed in this paper using the available hydrogeologic, geochemical and structural data for both the EGF and central Veneto. The thermal water is of meteoric origin and infiltrates approximately 80 km to the north of the EGF in the Veneto Prealps. The water flows to the south in a Mesozoic limestone and dolomite reservoir reaching a depth of approximately 3,000 m and a temperature of approximately 100 °C due to the normal geothermal gradient. The regional Schio-Vicenza fault system and its highly permeable damage zone act as a preferential path for fluid migration in the subsurface. In the EGF area, a geologic structure formed by the interaction of different segments of the fault system increases the local fracturing and the permeability favoring the upwelling of the thermal waters. Numerical simulations are performed to validate the proposed conceptual model using a finite difference code that simulates thermal energy transport in hydrothermal systems. A specific configuration of thermal conductivity and permeability for the formations involved in the thermal system is obtained after calibration of these parameters. This set of parameters is verified in a long-term simulation (55,100 years) obtaining a 60–70 °C plume in the EGF area. The modeled temperatures approach the measured temperatures of 60–86 °C, demonstrating that this conceptual model can be realistically simulated

    Partial tendon tear as unusual cause of trigger finger. a case report

    Get PDF
    We report a case of post-traumatic trigger finger due to a partial longitudinal tear of the flexor digitorum superficialis. The suspect came from the clinical history and the young age of the patient. It was successfully treated with tendon flap suture and pulley A1 release

    Thermal and spectroscopic (TG/DSC-FTIR) characterization of mixed plastics for materials and energy recovery under pyrolytic conditions

    Get PDF
    Seven waste thermoplastic polymers (polypropylene, polyethylene film, polyethylene terephthalate, polystyrene, acrylonitrile–butadiene–styrene, high-impact polystyrene and polybutadiene terephthalate, denoted as PP, PE (film), PET, PS, ABS, HIPS and PBT, respectively) and four synthetic mixtures thereof with different compositions representing commingled postconsumer plastic waste and waste of electrical and electronic equipment were studied by means of simultaneous thermogravimetry/differential scanning calorimetry coupled with Fourier transform infrared spectroscopy (TG/DSC–FTIR) under pyrolytic conditions (inert atmosphere). By summing all the heat change contributions due to physical and/or chemical processes occurring (i.e., melting, decomposition), an overall energy, defined as the degradation heat, was determined for both single component and their mixtures. It was found to be about 4–5 % of the exploitable energy of the input material. Vapors evolved during the pyrolysis of single-component polymers and their mixtures, analyzed using the FTIR apparatus, allowed identifying the main reaction products as monomers or fragments of the polymeric chain. Results from TG/DSC runs and FTIR analysis show that there is no interaction among the plastic components of the mixtures during the occurrence of pyrolysis

    Fault Control on a Thermal Anomaly: Conceptual and Numerical Modeling of a Low\u2010Temperature Geothermal System in the Southern Alps Foreland Basin (NE Italy)

    Get PDF
    The interest on low\u2010temperature geothermal resources is progressively increasing since their renewability and widespread availability. Despite their frequency, these resources and their development have been only partially investigated. This paper unravels the major physical processes driving a low\u2010temperature geothermal resource in NE Italy (Euganean Geothermal System) through conceptual and numerical modeling. Dense fracturing associated to regional fault zones and a relay ramp enhances regional to local flow of thermal waters. Their rapid upwelling in the Euganean Geothermal Field is favored by open extensional fractures deforming the relay ramp. The water (65\u201386 \ub0C) is intensively exploited for balneotherapy, rendering it a profitable resource. Three\u2010dimensional coupled flow and heat transport numerical simulations based on this conceptual model are performed. Despite the presence of a uniform basal heat flow, a thermal anomaly corresponding to field observations develops in the modeling domain reproducing the relay ramp. Intensive fracturing extending across a wide area and a slightly anomalous heat flow favors a local increase in convection that drives the upwelling of deep\u2010seated hot waters. The simulations corroborate and refine the conceptual model, revealing that water of up to 115 \ub0C is likely to be found in the unexplored part of the thermal field. This study furthers knowledge on fault\u2010controlled low\u2010temperature geothermal resources where the geological setting could enhance local convection without anomalous heat flows, creating temperatures favorable for energy production. Conceptual and numerical modeling based on solid geological and hydrogeological reconstructions can offer a support tool for further detailed explorations of these prominent resources

    a rare case of pancreatitis panniculitis and polyarthritis the p p p syndrome

    Get PDF
    A 70-year-old man was admitted to our Unit because of the onset of symmetric joint pain, and multiple cutaneous erythematous nodules localized to the lower extremities and gluteal region. An arthrocentesis excluded a septic arthritis and systemic and local steroid therapy resulted in a modest improvement of symptoms and cutaneous manifestations. For an acute abdominal pain with an elevation of serum amylase and lipase levels, the patient underwent an abdominal CT that showed a 55 mm roundish mass in the head of the pancreas with necrosis and colliquation, associated with dilatation of the main pancratic duct and thrombosis of the superior mesenteric vein. The pancreatic lesion was biopsied during an endoscopic ultrasonography and the histopathological examination documented a chronic obstructive pancreatitis. Taken together, the clinical manifestations shown by this case highlighted a rare condition referred to as "PPP (i.e. pancratitis, panniculitis, polyarthritis) syndrome" which links pancreatitis to extrapancreatic tissue involvement

    Unravelling the importance of fractured zone in regional fluid flow: insights from the hydrothermal modelling of the Euganean geothermal system (ne Italy)

    Get PDF
    Euganean Geothermal System, fault system, 3D coupled flow and heat transport numerical model

    defining the hydrogeological behavior of karst springs through an integrated analysis a case study in the berici mountains area vicenza ne italy

    Get PDF
    Knowledge of the hydraulic and geological properties of karst systems is particularly valuable to hydrogeologists because these systems represent an important source of potable water in many countries. However, the high heterogeneity that characterizes karst systems complicates the definition of karst hydrogeological properties, and their estimation involves complex and expensive techniques. In this study, a workflow for karst spring characterization was used to analyze two springs, Nanto spring and Mossano spring, located in the Berici Mountains (NE Italy). Based on the data derived from 4 years of continuous hourly monitoring of discharge, water temperature and specific electrical conductivity, a hydrogeological conceptual model for the monitored springs was proposed. Flow rate measurements, which combined recession curve, flow duration curve and autocorrelation function techniques, were used to evaluate the spring discharge variability. Changes in spring discharge can be related both to the degree of karstification/permeability and to the size of the karst aquifer. Moreover, combining monitored parameters and rainfall—analyzed by the cross-correlation function and VESPA (Vulnerability Estimator for Spring Protection Areas) index approach—permitted assessment of the spring response to recharge and the behavior of the drainage system. Although the responses to the recharge events were quite similar, the two springs showed some differences in terms of the degree of karstification. In fact, Mossano spring showed a more developed karst system than Nanto spring. Three systems (two karsts and one matrix/fractured) are outlined for Mossano spring, while two systems (one karst and one matrix/fractured) are outlined for Nanto spring

    Single harvesting in the all-inside graft-link technique. is the graft length crucial for success? A biomechanical study

    Get PDF
    Background: The all-inside graft-link technique for anterior cruciate ligament reconstruction is performed with two cortical suspension devices with adjustable loops on both femur and tibia. This technique requires meticulous graft preparation. The aim of this study was to biomechanically test three different graft configurations resulting from differences in initial graft length. Materials and methods: Thirty bovine digital extensor tendons were arranged in three different ways: “half-quadrupled”, “tripled” and “quadrupled”. The final graft length was 65–75 mm. The specimens were fixed vertical to the loading axis of a tensile testing machine. After a static pre-conditioning of 50 N for 5 min, a load to failure test was performed and data regarding the ultimate failure load (UFL), the stiffness and mode of failure were recorded. Results: The evaluation of UFL showed a significant differences between group means as determined by one-way analysis of variance (F = 21.92, p = 0.002). Post hoc comparisons showed a significantly better UFL of “tripled” (p = 0.007) and “quadrupled” preparations (p = 0.014) compared to the “half-quadrupled” configuration, with no significant differences between “tripled” and “quadrupled” grafts (p = 0.061). No significant differences were found when evaluating the stiffness between the groups. Failure occurred by tendon slippage across the suture in all specimens. Conclusion: The “quadrupled” tendon achieved the best UFL, with even the “tripled” configuration having sufficient biomechanical characteristics to withstand the loads experienced during early rehabilitation. For this reason, with a total semitendinosus length of less than 260 mm it could be better to “triple” instead of “half-quadruple” it to achieve better performance of the graft

    Computational modelling of emboli travel trajectories in cerebral arteries: Influence of microembolic particle size and density

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Ischaemic stroke is responsible for up to 80 % of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μ m and densities of 800, 1,030 and 1,300 kg/m 3 were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μ m) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions. © 2014 The Author(s)
    • …
    corecore