29 research outputs found

    On the wave-cancelling nature of boundary layer flow control

    Get PDF
    International audienceThis work deals with the feedforward active control of Tollmien–Schlichting instability waves over incompressible 2D and 3D boundary layers. Through an extensive numerical study, two strategies are evaluated; the optimal linear–quadratic–Gaussian (LQG) controller, designed using the Eigensystem realization algorithm, is compared to a wave-cancellation scheme, which is obtained using the direct inversion of frequency-domain transfer functions of the system. For the evaluated cases, it is shown that LQG leads to a similar control law and presents a comparable performance to the simpler, wave-cancellation scheme, indicating that the former acts via a destructive interference of the incoming wavepacket downstream of actuation. The results allow further insight into the physics behind flow control of convectively unstable flows permitting, for instance, the optimization of the transverse position for actuation. Using concepts of linear stability theory and the derived transfer function, a more efficient actuation for flow control is chosen, leading to similar attenuation of Tollmien–Schlichting waves with only about 10% of the actuation power in the baseline case

    Aeroelastic-tailoring of a wind-tunnel model for passive alleviation of static and dynamic loads

    Get PDF
    Composite materials allow to tailor the elastic properties of a structure. In aeroelasticity, this opens up the possibility to passively enhance the coupled aerostructural characteristics. In this work, the design of a composite wing is addressed with the aim to alleviate static and dynamic aeroelastic loads; these two objectives are quantified by the root-bending-moment in a high load-factor condition and the deformation amplitude of the wing under gust. A two-step approach of the optimal design of the structure is adopted. A Pareto front is computed via an aeroelastic model of the wing; the aerodynamic loads are modelled, depending on the load-case, either via the DLM or the RANS equations. The best-compromise design is chosen via a criterion based on the jig-shape and, finally, the stacking-sequences are computed via a specialised evolutionary algorithm

    Structural optimization of an aeroelastic wind tunnel model for unsteady transonic testing

    Get PDF
    The reduction of loads, ultimately leading to a weight reduction and thus an increase in aircraft performance, plays an important role in the design of modern aircraft. To this end, two aeroelastic tailoring methodologies, independently developed at ONERA and DLR and aiming at load reduction by means of a sophisticated application of composite materials, were applied to a common model geometry. A choice was made in favor of the publicly available NASA Common Research Model (CRM) wing, featuring a comprehensive database with respect to geometry, as well as analytical and experimental research results. The span of the wing half to be investigated was set to 0.55 m, limited by the test section dimensions. While wind tunnel testing was part of ONERA's workshare, the model building was performed by DLR. This paper at hand focuses on the structural, aeroelastic optimization of the DLR wing. It is based on an optimization framework developed and constantly being enhanced and extended at the DLR - Institute of Aeroelasticity (DLR-AE). The paper describes the consideration of different structural objective functions, structural and aeroelastic constraint combinations, design field considerations, as well as the application of an aero load correction applied in the course of the optimization. The final results consist of the selection of an appropriate fiber type, optimized fiber layers represented as stacking sequence tables for the upper and lower wing skins, and the corresponding optimized jig twist distribution, required for manufacturing the lamination molds; in summary, all data required to start the construction of the wind tunnel model

    Fördröjning av laminÀrt-turbulent omslag i grÀnsskiktströmning genom reaktiv kontroll

    No full text
    Transition delay in boundary-layer flows is achieved via reactive control of flow instabilities, i.e. Tollmien-Schlichting (TS) waves. Adaptive and model-based control techniques are investigated by means of direct numerical simulations (DNS) and experiments. The action of actuators localised in the wall region is prescribed based on localised measurement of the disturbance field; in particular, plasma actuators and surface hot-wire sensors are considered. Performances and limitations of this control approach are evaluated both for two-dimensional (2D) and three-dimensional (3D) disturbance scenarios. The focus is on the robustness properties of the investigated control techniques; it is highlighted that static model-based control, such as the linear-quadratic- Gaussian (LQG) regulator, is very sensitive to model-inaccuracies. The reason for this behaviour is found in the feed-forward nature of the adopted sensor/actuator scheme; hence, a second, downstream sensor is introduced and actively used to recover robustness via an adaptive filtered-x least-mean-squares (fxLMS) algorithm. Furthermore, the model of the flow required by the control algorithm is reduced to a time delay. This technique, called delayed-x least-mean-squares (dxLMS) algorithm, allows taking a step towards a self-tuning controller; by introducing a third sensor it is possible to compute on-line the suitable time-delay model with no previous knowledge of the controlled system. This self-tuning approach is successfully tested by in-flight experiments on a motor-glider. Lastly, the transition delay capabilities of the investigated control con- figuration are confirmed in a complex disturbance environment. The flow is perturbed with random localised disturbances inside the boundary layer and the laminar-to-turbulence transition is delayed via a multi-input-multi-output (MIMO) version of the fxLMS algorithm. A positive theoretical net-energy- saving is observed for disturbance amplitudes up to 2% of the free-stream velocity at the actuation location, reaching values around 1000 times the input power for the lower disturbance amplitudes that have been investigated. I den hĂ€r avhandlingen har reglertekniska metoder tillĂ€mpats för att försena omslaget frĂ„n ett laminĂ€rt till ett turbulent grĂ€nsskikt genom att dĂ€mpa tillvĂ€xten av smĂ„ instabiliteter, sĂ„ kallade Tollmien-Schlichting vĂ„gor. Adaptiva och modellbaserade metoder för reglering av strömning har undersökts med hjĂ€lp av numeriska berĂ€kningar av Navier-Stokes ekvationer, vindtunnelexperiment och Ă€ven genom direkt tillĂ€mpning pĂ„ flygplan. Plasmaaktuatorer och varmtrĂ„dsgivare vidhĂ€ftade pĂ„ ytan av plattan eller vingen har anvĂ€nts i experimenten och modellerats i berĂ€kningarna. Prestanda och begrĂ€nsningar av den valda kontrollstrategin har utvĂ€rderats för bĂ„de tvĂ„dimensionella och tredimensionella grĂ€nsskiktsinstabiliteter. Fokus har varit pĂ„ metodernas robusthet, dĂ€r vi visar att statiska metoder som linjĂ€r-kvadratiska regulatorer (LQG) Ă€r mycket kĂ€nsliga för avvikelser frĂ„n den nominella modellen. Detta beror frĂ€mst pĂ„ att regulatorer agerar i förkompenseringslĂ€ge (”feed-foward”) pĂ„ grund av strömningens karaktĂ€r och placeringen av givare och aktuatorer. För att minska kĂ€nsligheten mot avvikelser och dĂ€rmed öka robustheten har en givare införts nedströms och en adaptiv fXLMS algoritm (filtered-x least-mean-squares) har tillĂ€mpats.                  Vidare har modelleringen av fXLMS-algoritmen förenklats genom att ersĂ€tta överföringsfunktionen mellan aktuatorer och givare med en lĂ€mplig tidsfördröjning.  Denna  metod som kallas för dxLMS (delayed-x least-mean-squares) krĂ€ver att ytterligare en givare införs lĂ„ngt uppströms för att kunna uppskatta hastigheten pĂ„ de propagerande instabilitetsvĂ„gorna. Denna teknik har tillĂ€mpats framgĂ„ngsrikt för reglering av grĂ€nsskiktet pĂ„ vingen av ett segelflygplan. Slutligen har de reglertekniska metoderna testas för komplexa slumpmĂ€ssiga tredimensionella störningar som genererats uppströms lokalt i grĂ€nsskiktet. Vi visar att en signifikant försening av laminĂ€rt-turbulentomslag Ă€ger rum med hjĂ€lp av en fXLMS algoritm. En analys av energibudgeten visar att för ideala aktuatorer och givare kan den sparade energiĂ„tgĂ„ngen pĂ„ grund av minskad vĂ€ggfriktion vara upp till 1000 gĂ„nger större Ă€n den energi som anvĂ€nts för reglering

    Adaptive and model-based control in laminar boundary-layer flows

    No full text
    In boundary-layer flows it is possible to reduce the friction drag by breaking the path from laminar to turbulent state. In low turbulence environments, the laminar-to-turbulent transition is dominated by local flow instabilities – Tollmien-Schlichting (TS) waves – that exponentially grows while being con- vected by the flow and, eventually, lead to transition. Hence, by attenuating these disturbances via localised forcing in the flow it is possible to delay farther downstream the onset of turbulence and reduce the friction drag. Reactive control techniques are widely investigated to this end. The aim of this work is to compare model-based and adaptive control techniques and show how the adaptivity is crucial to control TS-waves in real applications. The control design consists in (i) choosing sensors and actuators and (ii) designing the system responsible to process on-line the measurement signals in order to compute an appropriate forcing by the actuators. This system, called compen- sator, can be static or adaptive, depending on the possibility of self-adjusting its response to unmodelled flow dynamics. A Linear Quadratic Gaussian (LQG) regulator is chosen as representative of static controllers. Direct numerical simulations of the flow are performed to provide a model for the compensator design and test its performance. An adaptive Filtered-X Least-Mean-Squares (FXLMS) compensator is also designed for the same flow case and its per- formance is compared to the model-based compensator via simulations and experiments. Although the LQG regulator behaves better at design conditions, it lacks robustness to small flow variations. On the other hand, the FXLMS compensator proved to be able to adapt its response to overcome the varied conditions and perform an adequate control action. It is thus found that an adaptive control technique is more suitable to delay the laminar-to-turbulent transition in situations where an accurate model of the flow is not available. I det tunna grĂ€nsskikt som uppstĂ„r en yta, kan friktionen minskas genom att förhindra omslag frĂ„n ett laminĂ€rt till ett turbulent flöde. NĂ€r turbulensnivĂ„n Ă€r lĂ„g  i omgivningen, domineras till en början omslaget av lokala instabiliteter (Tollmien-Schlichting (TS) v Ă„gor) som vĂ€xer i en exponentiell takt samtidigt som de propagerar nedströms. DĂ€rför, kan man förskjuta omslaget genom att dĂ€mpa TS vĂ„gors tillvĂ€xt i ett grĂ€nsskikt och dĂ€rmed minska friktionen.Med detta mĂ„l i sikte, tillĂ€mpas och jĂ€mförs tvĂ„ reglertekniska metoder, nĂ€mligen en adaptiv signalbaserad metod och en statiskt modellbaserad metod. Vi visar att adaptivitet är av avgörande betydelse för att kunna dĂ€mpa TS vĂ„gor i en verklig miljö. Den reglertekniska konstruktionen bestĂ„r av val av givare och aktuatorer samt att bestĂ€mma det system som behandlar mĂ€tsignaler (on- line) för berĂ€kning av en lĂ€mplig signal till aktuatorer. Detta system, som kallas för en kompensator, kan vara antingen statisk eller adaptiv, beroende pĂ„ om det har möjlighet till att anpassa sig till omgivningen. En sĂ„ kallad linjĂ€r regulator (LQG), som representerar den statiska kompensator, har tagits fram med hjĂ€lp av numeriska simuleringar of strömningsfĂ€ltet. Denna kompensator jĂ€mförs med en adaptiv regulator som kallas för Filtered-X Least-Mean-Squares (FXLMS) bĂ„de experimentellt och numeriskt. Det visar sig att LQG regulatorn har en bĂ€ttre prestanda Ă€n FXLMS för de parametrar som den var framtagen för, men brister i robusthet. FXLMS Ă„ andra sidan, anpassar sig till icke- modellerade störningar och variationer, och kan dĂ€rmed hĂ„lla en god och jĂ€mn prestanda.Man kan dĂ€rmed dra slutsaten att adaptiva regulatorer Ă€r mer lĂ€mpliga för att förhala omslaget fr Ă„n laminĂ€r till turbulent strömning i situationer dĂ„ en exakt modell av fysiken saknas.QC 20141020</p

    Fördröjning av laminÀrt-turbulent omslag i grÀnsskiktströmning genom reaktiv kontroll

    No full text
    Transition delay in boundary-layer flows is achieved via reactive control of flow instabilities, i.e. Tollmien-Schlichting (TS) waves. Adaptive and model-based control techniques are investigated by means of direct numerical simulations (DNS) and experiments. The action of actuators localised in the wall region is prescribed based on localised measurement of the disturbance field; in particular, plasma actuators and surface hot-wire sensors are considered. Performances and limitations of this control approach are evaluated both for two-dimensional (2D) and three-dimensional (3D) disturbance scenarios. The focus is on the robustness properties of the investigated control techniques; it is highlighted that static model-based control, such as the linear-quadratic- Gaussian (LQG) regulator, is very sensitive to model-inaccuracies. The reason for this behaviour is found in the feed-forward nature of the adopted sensor/actuator scheme; hence, a second, downstream sensor is introduced and actively used to recover robustness via an adaptive filtered-x least-mean-squares (fxLMS) algorithm. Furthermore, the model of the flow required by the control algorithm is reduced to a time delay. This technique, called delayed-x least-mean-squares (dxLMS) algorithm, allows taking a step towards a self-tuning controller; by introducing a third sensor it is possible to compute on-line the suitable time-delay model with no previous knowledge of the controlled system. This self-tuning approach is successfully tested by in-flight experiments on a motor-glider. Lastly, the transition delay capabilities of the investigated control con- figuration are confirmed in a complex disturbance environment. The flow is perturbed with random localised disturbances inside the boundary layer and the laminar-to-turbulence transition is delayed via a multi-input-multi-output (MIMO) version of the fxLMS algorithm. A positive theoretical net-energy- saving is observed for disturbance amplitudes up to 2% of the free-stream velocity at the actuation location, reaching values around 1000 times the input power for the lower disturbance amplitudes that have been investigated. I den hĂ€r avhandlingen har reglertekniska metoder tillĂ€mpats för att försena omslaget frĂ„n ett laminĂ€rt till ett turbulent grĂ€nsskikt genom att dĂ€mpa tillvĂ€xten av smĂ„ instabiliteter, sĂ„ kallade Tollmien-Schlichting vĂ„gor. Adaptiva och modellbaserade metoder för reglering av strömning har undersökts med hjĂ€lp av numeriska berĂ€kningar av Navier-Stokes ekvationer, vindtunnelexperiment och Ă€ven genom direkt tillĂ€mpning pĂ„ flygplan. Plasmaaktuatorer och varmtrĂ„dsgivare vidhĂ€ftade pĂ„ ytan av plattan eller vingen har anvĂ€nts i experimenten och modellerats i berĂ€kningarna. Prestanda och begrĂ€nsningar av den valda kontrollstrategin har utvĂ€rderats för bĂ„de tvĂ„dimensionella och tredimensionella grĂ€nsskiktsinstabiliteter. Fokus har varit pĂ„ metodernas robusthet, dĂ€r vi visar att statiska metoder som linjĂ€r-kvadratiska regulatorer (LQG) Ă€r mycket kĂ€nsliga för avvikelser frĂ„n den nominella modellen. Detta beror frĂ€mst pĂ„ att regulatorer agerar i förkompenseringslĂ€ge (”feed-foward”) pĂ„ grund av strömningens karaktĂ€r och placeringen av givare och aktuatorer. För att minska kĂ€nsligheten mot avvikelser och dĂ€rmed öka robustheten har en givare införts nedströms och en adaptiv fXLMS algoritm (filtered-x least-mean-squares) har tillĂ€mpats.                  Vidare har modelleringen av fXLMS-algoritmen förenklats genom att ersĂ€tta överföringsfunktionen mellan aktuatorer och givare med en lĂ€mplig tidsfördröjning.  Denna  metod som kallas för dxLMS (delayed-x least-mean-squares) krĂ€ver att ytterligare en givare införs lĂ„ngt uppströms för att kunna uppskatta hastigheten pĂ„ de propagerande instabilitetsvĂ„gorna. Denna teknik har tillĂ€mpats framgĂ„ngsrikt för reglering av grĂ€nsskiktet pĂ„ vingen av ett segelflygplan. Slutligen har de reglertekniska metoderna testas för komplexa slumpmĂ€ssiga tredimensionella störningar som genererats uppströms lokalt i grĂ€nsskiktet. Vi visar att en signifikant försening av laminĂ€rt-turbulentomslag Ă€ger rum med hjĂ€lp av en fXLMS algoritm. En analys av energibudgeten visar att för ideala aktuatorer och givare kan den sparade energiĂ„tgĂ„ngen pĂ„ grund av minskad vĂ€ggfriktion vara upp till 1000 gĂ„nger större Ă€n den energi som anvĂ€nts för reglering

    Structural Optimization of an Aeroelastic Wind Tunnel Model For Unsteady Transonic Testing

    No full text
    Within the scope of the "DLR - ONERA Partnership in Transport Aircraft Research", a common research program (CRP) called FIGURE - Flexible Wind Gust Response - was launched to investigate means of passive load control in the transonic regime. To this end, two aeroelastic tailoring methodologies, independently developed at ONERA and DLR, were applied to a common model geometry. A choice was made in favor of the publicly available NASA Common Research Model (CRM) wing, featuring a comprehensive database with respect to geometry, as well as analytical and experimental research results. The span of the wing half to be investigated was set to 0.55 m, limited by the test section dimensions. While wind tunnel testing was part of ONERA's workshare, the model building was performed by DLR. This report at hand focusses on the structural, aeroelastic optimization of the DLR wing. It is based on an optimization framework developed and constantly being enhanced and extended at the DLR - Institute of Aeroelasticity (DLR-AE). The report describes the consideration of different structural objective functions, structural and aeroelastic constraint combinations, design field considerations, as well as the application of an aero load correction applied in the course of the optimization. The final results consist of the selection of an appropriate fiber type, optimized fiber layers represented as stacking sequence tables for the upper and lower wing skins, and the corresponding optimized jig twist distribution, required for manufacturing the lamination molds; in summary, all data required to start the construction of the wind tunnel model
    corecore