629 research outputs found

    The polarization signature of photospheric magnetic fields in 3D MHD simulations and observations at disk center

    Full text link
    Before using 3D MHD simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112 and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SP, TIP, POLIS and the GFPI, respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS and GFPI observations.Comment: 12 pages, 11 figures; accepted for publication in Ap

    Spectroscopy at the solar limb: II. Are spicules heated to coronal temperatures ?

    Full text link
    Spicules of the so-called type II were suggested to be relevant for coronal heating because of their ubiquity on the solar surface and their eventual extension into the corona. We investigate whether solar spicules are heated to transition-region or coronal temperatures and reach coronal heights (>6 Mm) using multi-wavelength observations of limb spicules in different chromospheric spectral lines (Ca II H, Hepsilon, Halpha, Ca II IR at 854.2 nm, He I at 1083 nm). We determine the line width of individual spicules and throughout the field of view and estimate the maximal height that different types of off-limb features reach. We derive estimates of the kinetic temperature and the non-thermal velocity from the line width of spectral lines from different chemical elements. We find that most regular spicules reach a maximal height of about 6 Mm above the solar limb. The majority of features found at larger heights are irregularly shaped with a significantly larger lateral extension than spicules. Both individual and average line profiles in all spectral lines show a decrease in their line width with height above the limb with very few exceptions. Both the kinetic temperature and the non-thermal velocity decrease with height above the limb. We find no indications that the spicules in our data reach coronal heights or transition-region or coronal temperatures.Comment: Accepted for publication in Solar Physics, 52 pages, 32 figure

    Thermodynamic fluctuations in solar photospheric three-dimensional convection simulations and observations

    Full text link
    Numerical 3D radiative (M)HD simulations of solar convection are used to understand the physical properties of the solar photosphere. To validate this approach, it is important to check that no excessive thermodynamic fluctuations arise as a consequence of the partially incomplete treatment of radiative transfer. We investigate the realism of 3D convection simulations carried out with the Stagger code. We compared the characteristic properties of several spectral lines in solar disc centre observations with spectra synthesized from the simulations. We degraded the synthetic spectra to the spatial resolution of the observations using the continuum intensity distribution. We estimated the necessary spectral degradation by comparing atlas spectra with averaged observed spectra. In addition to deriving a set of line parameters directly, we used the SIR code to invert the spectra. Most of the line parameters from the observational data are matched well by the degraded simulation spectra. The inversions predict a macroturbulent velocity below 10 m/s for the simulation at full spatial resolution, whereas they yield ~< 1000 m/s at a spatial resolution of 0.3". The temperature fluctuations in the inversion of the degraded simulation do not exceed those from the observational data (of the order of 100-200 K rms for -2<log tau<-0.5). The comparison of line parameters in spatially averaged profiles with the averaged values of line parameters in spatially resolved profiles indicates a significant change of (average) line properties at a spatial scale between 0.13" and 0.3". Up to a spatial resolution of 0.3", we find no indications of the presence of excessive thermodynamic fluctuations in the 3D HD simulation. To definitely confirm that simulations without spatial degradation contain fully realistic thermodynamic fluctuations requires observations at even better spatial resolution.Comment: 21 pages, 15 figures + 2 pages Appendix, accepted for publication in A&A; v2 version: corrected for an error in the calculation of stray-light estimates, for details see the Corrigendum to A&A, 2013, 557, 109 (DOI: 10.1051/0004-6361/201321596). Corrected text and numbers are in bold font. Apart from the stray-light estimates, nothing in the rest of the paper was affected by the erro

    Dynamics in a supercooled molecular liquid: Theory and Simulations

    Full text link
    We report extensive simulations of liquid supercooled states for a simple three-sites molecular model, introduced by Lewis and Wahnstr"om [L. J. Lewis and G. Wahnstr"om, Phys. Rev. E 50, 3865 (1994)] to mimic the behavior of ortho-terphenyl. The large system size and the long simulation length allow to calculate very precisely --- in a large q-vector range --- self and collective correlation functions, providing a clean and simple reference model for theoretical descriptions of molecular liquids in supercooled states. The time and wavevector dependence of the site-site correlation functions are compared with detailed predictions based on ideal mode-coupling theory, neglecting the molecular constraints. Except for the wavevector region where the dynamics is controlled by the center of mass (around 9 nm-1), the theoretical predictions compare very well with the simulation data.

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    A template of atmospheric O2 circularly polarized emission for CMB experiments

    Full text link
    We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {\mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {\mu}K/\circ at 90 GHz. We also study the frequency bands of observation: around {\nu} \simeq 100 GHz and {\nu} \simeq 160 GHz we find the best conditions because the polarized signal vanishes. Finally we evaluate the accuracy of the templates and the signal variability in relation with the knowledge and the variability of the Earth magnetic field and the atmospheric parameters.Comment: 10 pages, 12 figures, accepted for publication on Mon. Not. R. Astron. So

    Modelling colloids with Baxter's adhesive hard sphere model

    Full text link
    The structure of the Baxter adhesive hard sphere fluid is examined using computer simulation. The radial distribution function (which exhibits unusual discontinuities due to the particle adhesion) and static structure factor are calculated with high accuracy over a range of conditions and compared with the predictions of Percus--Yevick theory. We comment on rigidity in percolating clusters and discuss the role of the model in the context of experiments on colloidal systems with short-range attractive forces.Comment: 14 pages, 7 figures. (For proceedings of "Structural arrest in colloidal systems with short-range attractive forces", Messina, December 2003

    Comorbidity and in-hospital mortality in peritoneal dialysis patients: data of the Emilia Romagna region of Italy

    Get PDF
    Objective: Kidney failure increases in-hospital mortality (IHM); however, comorbidity is crucial for predicting mortality in dialysis patients. Our aim was to evaluate the impact of comorbidity, assessed by modified Elixhauser index (mEI), Charlson Comorbidity Index (CCI), and age-adjusted CCI, on IHM in a cohort of peritoneal dialysis patients admitted to hospitals of the Emilia Romagna region (ERR) of Italy. Patients and methods: All hospital admissions of peritoneal dialysis patients recorded between 2007 and 2021 in the ERR database were analyzed. The International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) was used for detecting diagnoses and procedures, and the inclusion criterion was code 5498. Comorbidity burden was evaluated by three different scores, and hemodialysis (HD) treatment need was considered. IHM was our outcome. Results: During the 15 years of the study, 3,242 hospitalized peritoneal dialysis patients (62.7% males) were evaluated. Mean age was 62.8±20.6 years, 9.6% underwent HD, and IHM was 5.9% (n=192). IHM mortality was stable throughout the study period. Deceased subjects were older, were hospitalized longer, had a higher comorbidity burden, and had a higher percentage of HD treatment needs than survivors. Age, male sex, comorbidity burden, and HD treatment were predictors of IHM. Receiver operating characteristics (ROC) analysis confirmed the impact of comorbidity burden on IHM, especially when age was considered. Conclusions: We conclude that in male, elderly hospitalized peritoneal dialysis patients with failing dialysis technique, comorbidity burden should be considered being a predictor of IHM

    Comparative simulation study of colloidal gels and glasses

    Full text link
    Using computer simulations, we identify the mechanisms causing aggregation and structural arrest of colloidal suspensions interacting with a short-ranged attraction at moderate and high densities. Two different non-ergodicity transitions are observed. As the density is increased, a glass transition takes place, driven by excluded volume effects. In contrast, at moderate densities, gelation is approached as the strength of the attraction increases. At high density and interaction strength, both transitions merge, and a logarithmic decay in the correlation function is observed. All of these features are correctly predicted by mode coupling theory
    • …
    corecore