20 research outputs found

    Correlated Cryo Super‐Resolution Light and Cryo‐Electron Microscopy on Mammalian Cells Expressing the Fluorescent Protein rsEGFP2

    Get PDF
    Super‐resolution light microscopy (SRM) enables imaging of biomolecules within cells with nanometer precision. Cryo‐fixation by vitrification offers optimal structure preservation of biological specimens and permits sequential cryo electron microscopy (cryoEM) on the same sample, but is rarely used for SRM due to various technical challenges and the lack of fluorophores developed for vitrified conditions. Here, a protocol to perform correlated cryoSRM and cryoEM on intact mammalian cells using fluorescent proteins and commercially available equipment is described. After cell culture and sample preparation by plunge‐freezing, cryoSRM is performed using the reversibly photoswitchable fluorescent protein rsEGFP2. Next, a super‐resolved image is reconstructed to guide cryoEM imaging to the feature of interest. Finally, the cryoSRM and cryoEM images are correlated to combine information from both imaging modalities. Using this protocol, a localization precision of 30 nm for cryoSRM is routinely achieved. No impediments to successive cryoEM imaging are detected, and the protocol is compatible with a variety of cryoEM techniques. When the optical set‐up and analysis pipeline is established, the total duration of the protocol for experienced cryoEM users is 3 days, not including cell culture. Microscopic imaging and technolog

    Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins

    Get PDF
    Sample fixation by vitrification is critical for the optimal structural preservation of biomolecules and subsequent high-resolution imaging by cryo-correlative light and electron microscopy (cryoCLEM). There is a large resolution gap between cryo fluorescence microscopy (cryoFLM), ~400-nm, and the sub-nanometre resolution achievable with cryo-electron microscopy (cryoEM), which hinders interpretation of cryoCLEM data. Here, we present a general approach to increase the resolution of cryoFLM using cryo-super-resolution (cryoSR) microscopy that is compatible with successive cryoEM investigation in the same region. We determined imaging parameters to avoid devitrification of the cryosamples without the necessity for cryoprotectants. Next, we examined the applicability of various fluorescent proteins (FPs) for single-molecule localisation cryoSR microscopy and found that all investigated FPs display reversible photoswitchable behaviour, and demonstrated cryoSR on lipid nanotubes labelled with rsEGFP2 and rsFastLime. Finally, we performed SR-cryoCLEM on mammalian cells expressing microtubule-associated protein-2 fused to rsEGFP2 and performed 3D cryo-electron tomography on the localised areas. The method we describe exclusively uses commercially available equipment to achieve a localisation precision of 30-nm. Furthermore, all investigated FPs displayed behaviour compatible with cryoSR microscopy, making this technique broadly available without requiring specialised equipment and will improve the applicability of this emerging technique for cellular and structural biology. Microscopic imaging and technolog

    Феномен самодостатності містико-естетичного досвіду: місце в розумінні подібності християнства, даосизму, релігії давніх українців і сучасного містицизму

    Get PDF
    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells

    Orientation Analysis; multi-valuedness and shape descriptors

    No full text
    Imaging Science & TechnologyApplied Science

    Correlated Cryo Super-Resolution Light and Cryo-Electron Microscopy on Mammalian Cells Expressing the Fluorescent Protein rsEGFP2

    Get PDF
    Super-resolution light microscopy (SRM) enables imaging of biomolecules within cells with nanometer precision. Cryo-fixation by vitrification offers optimal structure preservation of biological specimens and permits sequential cryo electron microscopy (cryoEM) on the same sample, but is rarely used for SRM due to various technical challenges and the lack of fluorophores developed for vitrified conditions. Here, a protocol to perform correlated cryoSRM and cryoEM on intact mammalian cells using fluorescent proteins and commercially available equipment is described. After cell culture and sample preparation by plunge-freezing, cryoSRM is performed using the reversibly photoswitchable fluorescent protein rsEGFP2. Next, a super-resolved image is reconstructed to guide cryoEM imaging to the feature of interest. Finally, the cryoSRM and cryoEM images are correlated to combine information from both imaging modalities. Using this protocol, a localization precision of 30 nm for cryoSRM is routinely achieved. No impediments to successive cryoEM imaging are detected, and the protocol is compatible with a variety of cryoEM techniques. When the optical set-up and analysis pipeline is established, the total duration of the protocol for experienced cryoEM users is 3 days, not including cell culture.Microscopic imaging and technolog

    Conical Fourier shell correlation applied to electron tomograms

    No full text
    The resolution of electron tomograms is anisotropic due to geometrical constraints during data collection, such as the limited tilt range and single axis tilt series acquisition. Acquisition of dual axis tilt series can decrease these effects. However, in cryo-electron tomography, to limit the electron radiation damage that occurs during imaging, the total dose should not increase and must be fractionated over the two tilt series. Here we set out to determine whether it is beneficial fractionate electron dose for recording dual axis cryo electron tilt series or whether it is better to perform single axis acquisition. To assess the quality of tomographic reconstructions in different directions here we introduce conical Fourier shell correlation (cFSCe/o). Employing cFSCe/o, we compared the resolution isotropy of single-axis and dual-axis (cryo-)electron tomograms using even/odd split data sets. We show that the resolution of dual-axis simulated and cryo-electron tomograms in the plane orthogonal to the electron beam becomes more isotropic compared to single-axis tomograms and high resolution peaks along the tilt axis disappear. cFSCe/o also allowed us to compare different methods for the alignment of dual-axis tomograms. We show that different tomographic reconstruction programs produce different anisotropic resolution in dual axis tomograms. We anticipate that cFSCe/o can also be useful for comparisons of acquisition and reconstruction parameters, and different hardware implementations

    Towards the imaging of Weibel-Palade body biogenesis by serial block face-scanning electron microscopy

    No full text
    Electron microscopy is used in biological research to study the ultrastructure at high resolution to obtain information on specific cellular processes. Serial block face-scanning electron microscopy is a relatively novel electron microscopy imaging technique that allows three-dimensional characterization of the ultrastructure in both tissues and cells by measuring volumes of thousands of cubic micrometres yet at nanometre-scale resolution. In the scanning electron microscope, repeatedly an image is acquired followed by the removal of a thin layer resin embedded biological material by either a microtome or a focused ion beam. In this way, each recorded image contains novel structural information which can be used for three-dimensional analysis. Here, we explore focused ion beam facilitated serial block face-scanning electron microscopy to study the endothelial cell–specific storage organelles, the Weibel–Palade bodies, during their biogenesis at the Golgi apparatus. Weibel–Palade bodies predominantly contain the coagulation protein Von Willebrand factor which is secreted by the cell upon vascular damage. Using focused ion beam facilitated serial block face-scanning electron microscopy we show that the technique has the sensitivity to clearly reveal subcellular details like mitochondrial cristae and small vesicles with a diameter of about 50 nm. Also, we reveal numerous associations between Weibel–Palade bodies and Golgi stacks which became conceivable in large-scale three-dimensional data. We demonstrate that serial block face-scanning electron microscopy is a promising tool that offers an alternative for electron tomography to study subcellular organelle interactions in the context of a complete cell
    corecore