11 research outputs found

    MICA/B expression is inhibited by unfolded protein response and associated with poor prognosis in human hepatocellular carcinoma

    Get PDF
    BackgroundMICA/B are major ligands for NK cell activating receptor NKG2D and previous studies showed that the serum level of soluble MICA (sMICA) is an independent prognostic factor for advanced human hepatocellular carcinoma. However, the correlation between cellular MICA/B expression pattern and human hepatocellular carcinoma progression has not been well explored. The unfolded protein response is one of the main causes of resistance to chemotherapy and radiotherapy in tumor cells. However, whether the UPR in HCC could regulate the expression levels of MICA/B and affect the sensitivity of HCC cells to NK cell cytolysis has not been established yet.MethodsMICA/B expression pattern was evaluated by immunohistochemistry and Kaplan-Meier survival analysis was done to explore the relationship between MICA/B expression level and patient survival. The protein and mRNA expression levels of MICA/B in SMMC7721 and HepG2 cells treated by tunicamycin were evaluated by flow cytometry, Western Blot and RT-PCR. The cytotoxicity analysis was performed with the CytoTox 96 Non-Radioactive LDH Cytotoxicity Assay.ResultsMICA/B was highly expressed in human hepatocellular carcinoma and the expression level was significantly and negatively associated with tumor-node metastasis (TNM) stages. Patients with low level of MICA/B expression showed a trend of shorter survival time. The unfolded protein response (UPR) downregulated the expression of MICA/B. This decreased protein expression occurred via post-transcriptional regulation and was associated with proteasomal degradation. Moreover, decreased expression level of MICA/B led to the attenuated sensitivity of human HCC to NK cell cytotoxicity.ConclusionThese new findings of the connection of MICA/B, UPR and NK cells may represent a new concrete theory of NK cell regulation in HCC, and suggest that targeting this novel NK cell-associated immune evasion pathway may be meaningful in treating patients with HCC.Electronic supplementary materialThe online version of this article (doi:10.1186/s13046-014-0076-7) contains supplementary material, which is available to authorized users

    Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling

    No full text
    International audienceIn the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter
    corecore