3,041 research outputs found
Recommended from our members
In situ loading and delivery of short single- And double-stranded dna by supramolecular organic frameworks
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double endlabeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF-nucleic acid ratios. In addition to high delivery efficiencies, the watersoluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery
Numerical investigation on particle resuspension in turbulent duct flow via DNS-DEM: Effect of collisions
Particle transportation in a fully developed turbulent duct flow is numerically investigated under the effect of wall-normal gravity force. The hydrodynamic modeling of the fluid phase is based on direct numerical simulation. The kinematics and trajectory of the particles as well as the particle-particle interaction are described by the discrete element method (DEM). By using a soft-sphere DEM where the particles and the walls are specified by material properties in the simulation, the effect of collisions on the particle resuspension rate is discussed. The collisions are found to influence on the particle resuspension rate near the duct floor whereas hardly affect the particle behavior near the duct center
A room-temperature ferroelectric semimetal
Coexistence of reversible polar distortions and metallicity leading to a ferroelectric metal, first suggested by Anderson and Blount in 1965, has so far remained elusive. Electrically switchable intrinsic electric polarization, together with the direct observation of ferroelectric domains, has not yet been realized in a bulk crystalline metal, although incomplete screening by mobile conduction charges should, in principle, be possible. Here, we provide evidence that native metallicity and ferroelectricity coexist in bulk crystalline van der Waals WTe2 by means of electrical transport, nanoscale piezoresponse measurements, and first-principles calculations. We show that, despite being a Weyl semimetal, WTe2 has switchable spontaneous polarization and a natural ferroelectric domain structure at room temperature. This new class of materials has tantalizing potential for functional nanoelectronics applications
Thickness dependence of microstructures in La0.8Ca0.2MnO3 thin films
The thickness dependence of microstructures of La0.8Ca0.2MnO3 (LCMO)/SrTiO3 (STO) thin films was investigated by high-resolution x-ray diffraction, small angle x-ray reflection, grazing incidence x-ray diffraction, scanning electron microscopy, and atomic force microscopy. The results show that all the LCMO films are well oriented in (00l) direction perpendicular to the substrate surface. Self-organized crystalline grains with a tetragonal shape are uniformly distributed on the film surface, indicating the deposition condition being of benefit to the formation of the crystalline grains. With increasing the film thickness, the crystalline quality of the LCMO film is improved, while the surface becomes rougher. There exists a nondesigned cap layer on the upper surface of the LCMO layer for all the samples. The mechanism is discussed briefly.published_or_final_versio
Minimum Sensitivity Based Robust Beamforming with Eigenspace Decomposition
An enhanced eigenspace-based beamformer (ESB) derived using the
minimum sensitivity criterion is proposed with significantly improved robustness
against steering vector errors. The sensitivity function is defined as the squared
norm of the appropriately scaled weight vector and since the sensitivity function
of an array to perturbations becomes very large in the presence of steering vector
errors, it can be used to find the best projection for the ESB, irrespective of the
distribution of additive noises. As demonstrated by simulation results, the proposed
method has a better performance than the classic ESBs and the previously
proposed uncertainty set based approach
Key nodes of a microRNA network associated with the integrated mesenchymal subtype of high-grade serous ovarian cancer
Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition (EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas (TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This “paradox” can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating mRNA and microRNA (miRNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major miRNAs and 214 mRNAs. Among the 8 miRNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 miRNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer
Achiral phenolic N-oxides as additives: an alternative strategy for asymmetric cyanosilylation of ketones
The activation of chiral titanium(IV) complexes with additives, phenolic N-oxides, is found to provide an alternative strategy for asymmetric cyanosilylation of ketones in excellent yield With LIP to 82%, ee. (C) 2004 Elsevier Ltd. All rights reserved
Simvastatin inhibits TLR8 signaling in primary human monocytes and spontaneous TNF production from rheumatoid synovial membrane cultures
Simvastatin has been shown to have anti-inflammatory effects that are independent of its serum cholesterol lowering action, but the mechanisms by which these anti-inflammatory effects are mediated have not been elucidated. To explore the mechanism involved, the effect of simvastatin on Toll-like receptor (TLR) signalling in primary human monocytes was investigated. A short pre-treatment with simvastatin dose-dependently inhibited the production of tumor necrosis factor-α (TNF) in response to TLR8 (but not TLRs 2, 4, or 5) activation. Statins are known inhibitors of the cholesterol biosynthetic pathway, but intriguingly TLR8 inhibition could not be reversed by addition of mevalonate or geranylgeranyl pyrophosphate; downstream products of cholesterol biosynthesis. TLR8 signalling was examined in HEK 293 cells stably expressing TLR8, where simvastatin inhibited IKKα/β phosphorylation and subsequent NF-κB activation without affecting the pathway to AP-1. Since simvastatin has been reported to have anti-inflammatory effects in RA patients and TLR8 signalling contributes to TNF production in human RA synovial tissue in culture, simvastatin was tested in these cultures. Simvastatin significantly inhibited the spontaneous release of TNF in this model which was not reversed by mevalonate. Together, these results demonstrate a hitherto unrecognized mechanism of simvastatin inhibition of TLR8 signalling that may in part explain its beneficial anti-inflammatory effects
- …