222 research outputs found

    Job satisfaction and motivation of health workers in public and private sectors: cross-sectional analysis from two Indian states

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ensuring health worker job satisfaction and motivation are important if health workers are to be retained and effectively deliver health services in many developing countries, whether they work in the public or private sector. The objectives of the paper are to identify important aspects of health worker satisfaction and motivation in two Indian states working in public and private sectors.</p> <p>Methods</p> <p>Cross-sectional surveys of 1916 public and private sector health workers in Andhra Pradesh and Uttar Pradesh, India, were conducted using a standardized instrument to identify health workers' satisfaction with key work factors related to motivation. Ratings were compared with how important health workers consider these factors.</p> <p>Results</p> <p>There was high variability in the ratings for areas of satisfaction and motivation across the different practice settings, but there were also commonalities. Four groups of factors were identified, with those relating to job content and work environment viewed as the most important characteristics of the ideal job, and rated higher than a good income. In both states, public sector health workers rated "good employment benefits" as significantly more important than private sector workers, as well as a "superior who recognizes work". There were large differences in whether these factors were considered present on the job, particularly between public and private sector health workers in Uttar Pradesh, where the public sector fared consistently lower (<it>P </it>< 0.01). Discordance between what motivational factors health workers considered important and their perceptions of actual presence of these factors were also highest in Uttar Pradesh in the public sector, where all 17 items had greater discordance for public sector workers than for workers in the private sector (<it>P </it>< 0.001).</p> <p>Conclusion</p> <p>There are common areas of health worker motivation that should be considered by managers and policy makers, particularly the importance of non-financial motivators such as working environment and skill development opportunities. But managers also need to focus on the importance of locally assessing conditions and managing incentives to ensure health workers are motivated in their work.</p

    Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Get PDF
    Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of erythrocyte invasion are incompletely understood. P. falciparum depends heavily on sialic acid present on glycophorins to invade erythrocytes. However, a significant proportion of laboratory and field isolates are also able to invade erythrocytes in a sialic acid-independent manner. The identity of the erythrocyte sialic acid-independent receptor has been a mystery for decades. We report here that the complement receptor 1 (CR1) is a sialic acid-independent receptor for the invasion of erythrocytes by P. falciparum. We show that soluble CR1 (sCR1) as well as polyclonal and monoclonal antibodies against CR1 inhibit sialic acid-independent invasion in a variety of laboratory strains and wild isolates, and that merozoites interact directly with CR1 on the erythrocyte surface and with sCR1-coated microspheres. Also, the invasion of neuraminidase-treated erythrocytes correlates with the level of CR1 expression. Finally, both sialic acid-independent and dependent strains invade CR1 transgenic mouse erythrocytes preferentially over wild-type erythrocytes but invasion by the latter is more sensitive to neuraminidase. These results suggest that both sialic acid-dependent and independent strains interact with CR1 in the normal red cell during the invasion process. However, only sialic acid-independent strains can do so without the presence of glycophorin sialic acid. Our results close a longstanding and important gap in the understanding of the mechanism of erythrocyte invasion by P. falciparum that will eventually make possible the development of an effective blood stage vaccine

    Epistasis and genotype-by-environment interaction of grain protein content in durum wheat

    Get PDF
    Parental, F1 , F 2 , BC 1 and BC 2 generations of four crosses involving four cultivars of durum wheat (Triticum durum Desf.) were evaluated at two sites in Tunisia. A three-parameter model was found inadequate for all cases except crosses Chili x Cocorit 71 at site Sidi Thabet and Inrat 69 x Karim at both sites. In most cases a digenic epistatic model was sufficient to explain variation in generation means. Dominance effects (h) and additive x additive epistasis (i) (when significant) were more important than additive (d) effects and other epistatic components. Considering the genotype-by-environment interaction, the non-interactive model (m, d, h, e) was found adequate. Additive variance was higher than environmental variance in three crosses at both sites. The estimated values of narrow-sense heritability were dependent upon the cross and the sites and were 0%-85%. The results indicate that appropriate choice of environment and selection in later generations would increase grain protein content in durum wheat

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Radiotherapy and temozolomide for newly diagnosed glioblastoma and anaplastic astrocytoma: validation of Radiation Therapy Oncology Group-Recursive Partitioning Analysis in the IMRT and temozolomide era

    Get PDF
    Since the development of the Radiation Therapy Oncology Group-Recursive Partitioning Analysis (RTOG-RPA) risk classes for high-grade glioma, radiation therapy in combination with temozolomide (TMZ) has become standard care. While this combination has improved survival, the prognosis remains poor in the majority of patients. Therefore, strong interest in high-grade gliomas from basic research to clinical trials persists. We sought to evaluate whether the current RTOG-RPA retains prognostic significance in the TMZ era or alternatively, if modifications better prognosticate the optimal selection of patients with similar baseline prognosis for future clinical protocols. The records of 159 patients with newly-diagnosed glioblastoma (GBM, WHO grade IV) or anaplastic astrocytoma (AA, WHO grade III) were reviewed. Patients were treated with intensity-modulated radiation therapy (IMRT) and concurrent followed by adjuvant TMZ (n = 154) or adjuvant TMZ only (n = 5). The primary endpoint was overall survival. Three separate analyses were performed: (1) application of RTOG-RPA to the study cohort and calculation of subsequent survival curves, (2) fit a new tree model with the same predictors in RTOG-RPA, and (3) fit a new tree model with an expanded predictor set. All analyses used a regression tree analysis with a survival outcome fit to formulate new risk classes. Overall median survival was 14.9 months. Using the RTOG-RPA, the six classes retained their relative prognostic significance and overall ordering, with the corresponding survival distributions significantly different from each other (P < 0.01, χ2 statistic = 70). New recursive partitioning limited to the predictors in RTOG-RPA defined four risk groups based on Karnofsky Performance Status (KPS), histology, age, length of neurologic symptoms, and mental status. Analysis across the expanded predictors defined six risk classes, including the same five variables plus tumor location, tobacco use, and hospitalization during radiation therapy. Patients with excellent functional status, AA, and frontal lobe tumors had the best prognosis. For patients with newly-diagnosed high-grade gliomas, RTOG-RPA classes retained prognostic significance in patients treated with TMZ and IMRT. In contrast to RTOG-RPA, in our modified RPA model, KPS rather than age represented the initial split. New recursive partitioning identified potential modifications to RTOG-RPA that should be further explored with a larger data set

    Determination of quantitative trait loci (QTL) for early maturation in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    To identify quantitative trait loci (QTL) influencing early maturation (EM) in rainbow trout (Oncorhynchus mykiss), a genome scan was performed using 100 microsatellite loci across 29 linkage groups. Six inter-strain paternal half-sib families using three inter-strain F(1) brothers (approximately 50 progeny in each family) derived from two strains that differ in the propensity for EM were used in the study. Alleles derived from both parental sources were observed to contribute to the expression of EM in the progeny of the brothers. Four genome-wide significant QTL regions (i.e., RT-8, -17, -24, and -30) were observed. EM QTL detected on RT-8 and -24 demonstrated significant and suggestive QTL effects in both male and female progeny. Furthermore, within both male and female full-sib groupings, QTL on RT-8 and -24 were detected in two or more of the five parents used. Significant genome-wide and several strong chromosome-wide QTL for EM localized to different regions in males and females, suggesting some sex-specific control. Namely, QTL detected on RT-13, -15, -21, and -30 were associated with EM only in females, and those on RT-3, -17, and -19 were associated with EM only in males. Within the QTL regions identified, a comparison of syntenic EST markers from the rainbow trout linkage map with the zebrafish (Danio rerio) genome identified several putative candidate genes that may influence EM. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10126-008-9098-5) contains supplementary material, which is available to authorized users

    The mutational impact of culturing human pluripotent and adult stem cells

    Get PDF
    Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies
    corecore