590 research outputs found

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Sensory Transduction Channel Subunits, tax-4 and tax-2, Modify Presynaptic Molecular Architecture in C. elegans

    Get PDF
    During development, neural activity is important for forming proper connections in neural networks. The effect of activity on the gross morphology and synaptic strength of neurons has been well documented, but little is known about how activity affects different molecular components during development. Here, we examine the localization of four fluorescently-tagged presynaptic proteins, RAB-3, SNG-1/synaptogyrin, SYD-2/Liprin-α, and SAD-1/SAD kinase, in the C. elegans thermosensory neuron AFD. We show that tax-4 and tax-2, two genes that encode the cyclic nucleotide-gated channel necessary for sensory transduction in AFD, disrupt the localization of all four proteins. In wild-type animals, the synaptic vesicle (SV) markers RAB-3 and SNG-1 and the active zone markers SYD-2 and SAD-1 localize in a stereotyped, punctate pattern in the AFD axon. In tax-4 and tax-2 mutants, SV and SYD-2 puncta are more numerous and less intense. Interestingly, SAD-1 puncta are also less intense but do not increase in number. The change in puncta number can be rescued cell-autonomously in AFD. These results suggest that sensory transduction genes tax-4 and tax-2 are necessary for the proper assembly of presynapses

    Vaccinia-Related Kinase 1 Is Required for the Maintenance of Undifferentiated Spermatogonia in Mouse Male Germ Cells

    Get PDF
    Vaccinia-related kinase 1 (VRK1) is a crucial protein kinase for mitotic regulation. VRK1 is known to play a role in germ cell development, and its deficiency results in sterility. Here we describe that VRK1 is essential for the maintenance of spermatogonial stem cells. To determine whether VRK1 plays a role in these cells, we assessed the population size of undifferentiated spermatogonia. Flow cytometry analyses showed that the number of undifferentiated spermatogonia was markedly reduced in VRK1-deficient testes. VRK1 was highly expressed in spermatogonial populations, and approximately 66% of undifferentiated spermatogonia that were sorted as an Ep-CAM+/c-kit−/alpha-6-integrin+ population showed a positive signal for VRK1. Undifferentiated stem cells expressing Plzf and Oct4 but not c-kit also expressed VRK1, suggesting that VRK1 is an intrinsic factor for the maintenance of spermatogonial stem cells. Microarray analyses of the global testicular transcriptome and quantitative RT-PCR of VRK1-deficient testes revealed significantly reduced expression levels of undifferentiated spermatogonial marker genes in early postnatal mice. Together, these results suggest that VRK1 is required for the proliferation and differentiation of undifferentiated spermatogonia, which are essential for spermatogenic cell maintenance

    In vivo tumor cell adhesion in the pulmonary microvasculature is exclusively mediated by tumor cell - endothelial cell interaction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis formation is the leading cause of death among colon cancer patients. We established a new in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this typical metastatic target of colon cancer.</p> <p>Methods</p> <p>Anaesthetized CD rats were mechanically ventilated and 10<sup>6 </sup>human HT-29LMM and T84 colon cancer cells were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10 minute intervals for a total of 40 minutes beginning with the time of injection.</p> <p>Results</p> <p>After vehicle treatment of HT-29LMM controls 15.2 ± 5.3; 14.2 ± 7.5; 11.4 ± 5.5; and 15.4 ± 6.5 cells/20 microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against β1-, β4-, and αv-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by more than 50% (p < 0.05). The same degree of impairment was achieved by inhibition of P- and L-selectins via animal treatment with fucoidan (p < 0.05) and also by inhibition of the Thomson-Friedenreich (TF)-antigen (p < 0.05).</p> <p>Conclusions</p> <p>These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by circulating tumor cells.</p

    Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma

    Get PDF
    Background: Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer. Methods: The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response. The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination chemotherapy. Results: There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF (P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (95% CI) for baseline CA19-9 (1.30 (1.07–1.59), P=0.009) and CRP (1.55 (1.00–2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent (P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was no association with apoptosis. Conclusions: Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced pancreatic cancer

    Protoplasmic Astrocytes Enhance the Ability of Neural Stem Cells to Differentiate into Neurons In Vitro

    Get PDF
    Protoplasmic astrocytes have been reported to exhibit neuroprotective effects on neurons, but there has been no direct evidence for a functional relationship between protoplasmic astrocytes and neural stem cells (NSCs). In this study, we examined neuronal differentiation of NSCs induced by protoplasmic astrocytes in a co-culture model. Protoplasmic astrocytes were isolated from new-born and NSCs from the E13-15 cortex of rats respectively. The differentiated cells labeled with neuron-specific marker β-tubulin III, were dramatically increased at 7 days in the co-culture condition. Blocking the effects of brain-derived neurotrophic factor (BDNF) with an anti-BDNF antibody reduced the number of neurons differentiated from NSCs when co-cultured with protoplasmic astrocytes. In fact, the content of BDNF in the supernatant obtained from protoplasmic astrocytes and NSCs co-culture media was significantly greater than that from control media conditions. These results indicate that protoplasmic astrocytes promote neuronal differentiation of NSCs, which is driven, at least in part, by BDNF

    Local replication of simian immunodeficiency virus in the breast milk compartment of chronically-infected, lactating rhesus monkeys

    Get PDF
    Breast milk transmission remains a major mode of infant HIV acquisition, yet anatomic and immunologic forces shaping virus quasispecies in milk are not well characterized. In this study, phylogenic analysis of envelope sequences of milk SIV variants revealed groups of nearly identical viruses, indicating local virus production. However, comparison of the patterns and rates of CTL escape of blood and milk virus demonstrated only subtle differences between the compartments. These findings suggest that a substantial fraction of milk viruses are produced by locally-infected cells, but are shaped by cellular immune pressures similar to that in the blood

    Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Get PDF
    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L

    Endothelial dysfunction of bypass graft: Direct comparison of In Vitro and In Vivo models of ischemia-reperfusion injury

    Get PDF
    BACKGROUND: Although, ischemia/reperfusion induced vascular dysfunction has been widely described, no comparative study of in vivo- and in vitro-models exist. In this study, we provide a direct comparison between models (A) ischemic storage and in-vitro reoxygenation (B) ischemic storage and in vitro reperfusion (C) ischemic storage and in-vivo reperfusion. METHODS AND RESULTS: Aortic arches from rats were stored for 2 hours in saline. Arches were then (A) in vitro reoxygenated (B) in vitro incubated in hypochlorite for 30 minutes (C) in vivo reperfused after heterotransplantation (2, 24 hours and 7 days reperfusion). Endothelium-dependent and independent vasorelaxations were assessed in organ bath. DNA strand breaks were assessed by TUNEL-method, mRNA expressions (caspase-3, bax, bcl-2, eNOS) by quantitative real-time PCR, proteins by Western blot analysis and the expression of CD-31 by immunochemistry. Endothelium-dependent maximal relaxation was drastically reduced in the in-vivo models compared to ischemic storage and in-vitro reperfusion group, and no difference showed between ischemic storage and control group. CD31-staining showed significantly lower endothelium surface ratio in-vivo, which correlated with TUNEL-positive ratio. Increased mRNA and protein levels of pro- and anti-apoptotic gens indicated a significantly higher damage in the in-vivo models. CONCLUSION: Even short-period of ischemia induces severe endothelial damage (in-vivo reperfusion model). In-vitro models of ischemia-reperfusion injury can be limitedly suited for reliable investigations. Time course of endothelial stunning is also described
    corecore