415 research outputs found

    A critical scientific review on South African governance of genetically modified organisms (GMOs)

    Get PDF
    Credible governance of genetically modified organisms (GMOs) is essential because of public concerns in South Africa (SA) and internationally. In this preliminary study, the opinions of a number of scientists with experience and/or interest in GMO governance were determined by means of two questionnaires to determine their perceptions on the credibility of risk governance of GMOs in SA. The respondents felt ‘some improvement’ was required in criteria related to good governance. Excellence (quality of risk assessment) and effectiveness, such as protracted regulatory processes needed ‘some to much improvement’. The responses were evaluated against an analysis of the South African GMO Act, regulations, policy guidelines and available information. The Act provides a pro-active basis for good governance comparable to internationally described risk governance models, but implementation seemed to follow the less advanced technocratic model. A number of reasons were identified such as unclear roles of decision makers. Some of the causes for protracted decision-making identified by respondents were: a) excessive precaution in decision making, and b) different mandates resulting in no unanimity among government departments. Proposals for improvement in credibility included communication as a critical component of risk governance and continued training of reviewers and decision makers.Keywords: Genetically modified organisms, risk assessment, risk governance, South AfricaAfrican Journal of Biotechnology Vol. 12(32), pp. 5010-502

    Diagnostic value of real-time polymerase chain reaction to detect viruses in young children admitted to the paediatric intensive care unit with lower respiratory tract infection

    Get PDF
    INTRODUCTION: The aetiology of lower respiratory tract infections in young children admitted to the paediatric intensive care unit (PICU) is often difficult to establish. However, most infections are believed to be caused by respiratory viruses. A diagnostic study was performed to compare conventional viral tests with the recently developed real-time PCR technique. METHOD: Samples from children aged under 5 years presenting to a tertiary PICU suspected of having a lower respiratory tract infection were tested using conventional methods (viral culture and immunofluorescence) and real-time PCR during the winter season from December 2004 to May 2005. Conventional methods were used to check for respiratory syncytial virus, influenzavirus, parainfluenzavirus 1–3, rhinoviruses and adenoviruses. Real-time PCR was used to test for respiratory syncytial virus, influenzavirus, parainfluenzavirus 1–4, rhinoviruses, adenoviruses, human coronaviruses OC43, NL63 and 229E, human metapneumovirus, Mycoplasma pneumoniae and Chlamydia pneumoniae. RESULTS: A total of 23 patients were included, of whom 11 (48%) were positive for a respiratory virus by conventional methods. Real-time PCR confirmed all of these positive results. In addition, real-time PCR identified 22 more viruses in 11 patients, yielding a total of 22 (96%) patients with a positive sample. More than one virus was detected in eight (35%) children. CONCLUSION: Real-time PCR for respiratory viruses was found to be a sensitive and reliable method in PICU patients with lower respiratory tract infection, increasing the diagnostic yield twofold compared to conventional methods

    A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data

    Get PDF
    Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua) and whiting (Merlangius merlangus), a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size). The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year

    Circulating Acylcarnitines Associated with Hypertrophic Cardiomyopathy Severity: an Exploratory Cross-Sectional Study in MYBPC3 Founder Variant Carriers

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a relatively common genetic heart disease characterised by myocardial hypertrophy. HCM can cause outflow tract obstruction, sudden cardiac death and heart failure, but severity is highly variable. In this exploratory cross-sectional study, circulating acylcarnitines were assessed as potential biomarkers in 124 MYBPC3 founder variant carriers (59 with severe HCM, 26 with mild HCM and 39 phenotype-negative [G + P-]). Elastic net logistic regression identified eight acylcarnitines associated with HCM severity. C3, C4, C6-DC, C8:1, C16, C18 and C18:2 were significantly increased in severe HCM compared to G + P-, and C3, C6-DC, C8:1 and C18 in mild HCM compared to G + P-. In multivariable linear regression, C6-DC and C8:1 correlated to log-transformed maximum wall thickness (coefficient 5.01, p = 0.005 and coefficient 0.803, p = 0.007, respectively), and C6-DC to log-transformed ejection fraction (coefficient -2.50, p = 0.004). Acylcarnitines seem promising biomarkers for HCM severity, however prospective studies are required to determine their prognostic value

    Skills training in minimally invasive surgery in Dutch obstetrics and gynecology residency curriculum

    Get PDF
    The complexity of acquiring minimally invasive surgical (MIS) skills, combined with smaller case volumes for residents have pushed the development of skills training facilities on simulators outside the operating room (OR). Medico-legal and financial constraints have stimulated this development even more. However, the implementation of simulator training into a residency curriculum is shown to be troublesome. MIS skills training is organized in a uniform and easily applicable way in the Dutch obstetrics and gynecology residency curriculum. Every resident is obliged to attend the same basic surgical skills course, named Cobra-alpha course, intentionally during postgraduate year (PGY) 1 or 2. Furthermore, surgical skills are trained, evaluated and expanded on simulators in teaching hospitals. Additional to the Cobra-alpha course, residents may attend advanced training courses and congresses focusing on laparoscopy and hysteroscopy. This organization guarantees a uniform introduction to MIS skills training for every resident. However, preconditions for continuous training and evaluation after this introduction have to be optimized

    BIO FOr CARE: biomarkers of hypertrophic cardiomyopathy development and progression in carriers of Dutch founder truncating MYBPC3 variants-design and status

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disease, commonly caused by truncating variants in the MYBPC3 gene. HCM is an important cause of sudden cardiac death; however, overall prognosis is good and penetrance in genotype-positive individuals is incomplete. The underlying mechanisms are poorly understood and risk stratification remains limited. AIM: To create a nationwide cohort of carriers of truncating MYBPC3 variants for identification of predictive biomarkers for HCM development and progression. METHODS: In the multicentre, observational BIO FOr CARe (Identification of BIOmarkers of hypertrophic cardiomyopathy development and progression in Dutch MYBPC3 FOunder variant CARriers) cohort, carriers of the c.2373dupG, c.2827C > T, c.2864_2865delCT and c.3776delA MYBPC3 variants are included and prospectively undergo longitudinal blood collection. Clinical data are collected from first presentation onwards. The primary outcome constitutes a composite endpoint of HCM progression (maximum wall thickness ≥ 20 mm, septal reduction therapy, heart failure occurrence, sustained ventricular arrhythmia and sudden cardiac death). RESULTS: So far, 250 subjects (median age 54.9 years (interquartile range 43.3, 66.6), 54.8% male) have been included. HCM was diagnosed in 169 subjects and dilated cardiomyopathy in 4. The primary outcome was met in 115 subjects. Blood samples were collected from 131 subjects. CONCLUSION: BIO FOr CARe is a genetically homogeneous, phenotypically heterogeneous cohort incorporating a clinical data registry and longitudinal blood collection. This provides a unique opportunity to study biomarkers for HCM development and prognosis. The established infrastructure can be extended to study other genetic variants. Other centres are invited to join our consortium

    Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the cardiac muscle, frequently caused by mutations in MYBPC3. However, little is known about the upstream pathways and key regulators causing the disease. Therefore, we employed a multi-omics approach to study the pathomechanisms underlying HCM comparing patient hearts harboring MYBPC3 mutations to control hearts. RESULTS: Using H3K27ac ChIP-seq and RNA-seq we obtained 9310 differentially acetylated regions and 2033 differentially expressed genes, respectively, between 13 HCM and 10 control hearts. We obtained 441 differentially expressed proteins between 11 HCM and 8 control hearts using proteomics. By integrating multi-omics datasets, we identified a set of DNA regions and genes that differentiate HCM from control hearts and 53 protein-coding genes as the major contributors. This comprehensive analysis consistently points toward altered extracellular matrix formation, muscle contraction, and metabolism. Therefore, we studied enriched transcription factor (TF) binding motifs and identified 9 motif-encoded TFs, including KLF15, ETV4, AR, CLOCK, ETS2, GATA5, MEIS1, RXRA, and ZFX. Selected candidates were examined in stem cell-derived cardiomyocytes with and without mutated MYBPC3. Furthermore, we observed an abundance of acetylation signals and transcripts derived from cardiomyocytes compared to non-myocyte populations. CONCLUSIONS: By integrating histone acetylome, transcriptome, and proteome profiles, we identified major effector genes and protein networks that drive the pathological changes in HCM with mutated MYBPC3. Our work identifies 38 highly affected protein-coding genes as potential plasma HCM biomarkers and 9 TFs as potential upstream regulators of these pathomechanisms that may serve as possible therapeutic targets

    The complete sequence of the Acacia ligulata chloroplast genome reveals a highly divergent clpP1 gene

    Get PDF
    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease comple
    corecore