124 research outputs found

    Are waiting times for hospital admissions affected by patients' choices and mobility?

    Get PDF
    Background Waiting times for elective care have been considered a serious problem in many health care systems. A topic of particular concern has been how administrative boundaries act as barriers to efficient patient flows. In Norway, a policy combining patient's choice of hospital and removal of restriction on referrals was introduced in 2001, thereby creating a nationwide competitive referral system for elective hospital treatment. The article aims to analyse if patient choice and an increased opportunity for geographical mobility has reduced waiting times for individual elective patients. Methods A survey conducted among Norwegian somatic patients in 2004 gave information about whether the choice of hospital was made by the individual patient or by others. Survey data was then merged with administrative data on which hospital that actually performed the treatment. The administrative data also gave individual waiting time for hospital admission. Demographics, socio-economic position, and medical need were controlled for to determine the effect of choice and mobility upon waiting time. Several statistical models, including one with instrument variables for choice and mobility, were run. Results Patients who had neither chosen hospital individually nor bypassed the local hospital for other reasons faced the longest waiting times. Next were patients who individually had chosen the local hospital, followed by patients who had not made an individual choice, but had bypassed the local hospital for other reasons. Patients who had made a choice to bypass the local hospitals waited on average 11 weeks less than the first group. Conclusion The analysis indicates that a policy combining increased opportunity for hospital choice with the removal of rules restricting referrals can reduce waiting times for individual elective patients. Results were robust over different model specifications

    The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    Get PDF
    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains.This work has been funded by the Spanish Government (grants CSD2009-00006 and BFU2012-33248, 70% funded by FEDER). This work was also supported by the National Institute of General Medical Science of the National Institutes of Health under award number R01GM095826 to LJS, and by the National Science Foundation under award number MCB0742976 to LJS. JMD and JP received a fellowship from Junta de Andalucía to do some work at University of Georgia

    miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells

    Get PDF
    Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs) grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs), and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications

    Comparative 3D QSAR study on β1-, β2-, and β3-adrenoceptor agonists

    Get PDF
    A quantitative structure–activity relationship study of tryptamine-based derivatives of β1-, β2-, and β3-adrenoceptor agonists was conducted using comparative molecular field analysis (CoMFA). Correlation coefficients (cross-validated r2) of 0.578, 0.595, and 0.558 were obtained for the three subtypes, respectively, in three different CoMFA models. All three CoMFA models have different steric and electrostatic contributions, implying different requirements inside the binding cavity. The CoMFA coefficient contour plots of the three models and comparisons among these plots provide clues regarding the main chemical features responsible for the biological activity variations and also result in predictions which correlate very well with the observed biological activity. Based on the analysis, a summary regeospecific description of the requirements for improving β-adrenoceptor subtype selectivity is given

    The emergence of modern statistics in agricultural science : Analysis of variance, experimental design and the reshaping of research at Rothamsted Experimental Station, 1919–1933

    Get PDF
    During the twentieth century statistical methods have transformed research in the experimental and social sciences. Qualitative evidence has largely been replaced by quantitative results and the tools of statistical inference have helped foster a new ideal of objectivity in scientific knowledge. The paper will investigate this transformation by considering the genesis of analysis of variance and experimental design, statistical methods nowadays taught in every elementary course of statistics for the experimental and social sciences. These methods were developed by the mathematician and geneticist R. A. Fisher during the 1920s, while he was working at Rothamsted Experimental Station, where agricultural research was in turn reshaped by Fisher’s methods. Analysis of variance and experimental design required new practices and instruments in field and laboratory research, and imposed a redistribution of expertise among statisticians, experimental scientists and the farm staff. On the other hand the use of statistical methods in agricultural science called for a systematization of information management and made computing an activity integral to the experimental research done at Rothamsted, permanently integrating the statisticians’ tools and expertise into the station research programme. Fisher’s statistical methods did not remain confined within agricultural research and by the end of the 1950s they had come to stay in psychology, sociology, education, chemistry, medicine, engineering, economics, quality control, just to mention a few of the disciplines which adopted them

    Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scientists and physicians have long noted similarities between the general behavior of a cancerous tumor and the physiological process of wound healing. But it may be during metastasis that the parallels between cancer and wound healing are most pronounced. And more particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation, may be heavily dependent on wound healing pathways for its further survival and proliferation.</p> <p>Discussion</p> <p>If cancer cells can hijack the wound healing process to facilitate their metastatic spread and survival, then the period immediately after surgery may be a particularly vulnerable period of time for the host, as wound healing pathways are activated and amplified after the primary tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering therapy during the perioperative period.</p> <p>Summary</p> <p>Waiting for wound healing to occur before initiating adjuvant therapies may be seriously compromising their effectiveness, and patients subsequently rendered incurable as a result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant therapies perioperatively are needed. These therapies should target not only the residual cancer cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.</p
    corecore