183 research outputs found
The conformational evolution of elongated polymer solutions tailors the polarization of light-emission from organic nanofibers
Polymer fibers are currently exploited in tremendously important
technologies. Their innovative properties are mainly determined by the behavior
of the polymer macromolecules under the elongation induced by external
mechanical or electrostatic forces, characterizing the fiber drawing process.
Although enhanced physical properties were observed in polymer fibers produced
under strong stretching conditions, studies of the process-induced nanoscale
organization of the polymer molecules are not available, and most of fiber
properties are still obtained on an empirical basis. Here we reveal the
orientational properties of semiflexible polymers in electrospun nanofibers,
which allow the polarization properties of active fibers to be finely
controlled. Modeling and simulations of the conformational evolution of the
polymer chains during electrostatic elongation of semidilute solutions
demonstrate that the molecules stretch almost fully within less than 1 mm from
jet start, increasing polymer axial orientation at the jet center. The
nanoscale mapping of the local dichroism of individual fibers by polarized
near-field optical microscopy unveils for the first time the presence of an
internal spatial variation of the molecular order, namely the presence of a
core with axially aligned molecules and a sheath with almost radially oriented
molecules. These results allow important and specific fiber properties to be
manipulated and tailored, as here demonstrated for the polarization of emitted
light.Comment: 45 pages, 10 figures, Macromolecules (2014
Analysis of ring laser gyroscopes including laser dynamics
Inertial sensors stimulate very large interest, not only for their
application but also for fundamental physics tests. Ring laser gyros, which
measure angular rotation rate, are certainly among the most sensitive inertial
sensors, with excellent dynamic range and bandwidth. Large area ring laser
gyros are routinely able to measure fractions of prad/s, with high duty cycle
and bandwidth, providing fast, direct and local measurement of relevant
geodetic and geophysical signals. Improvements of a factor would open
the windows for general relativity tests, as the GINGER project, an Earth based
experiment aiming at the Lense-Thirring test at level. However, it is
well known that the dynamics of the laser induces non-linearities, and those
effects are more evident in small scale instruments. Sensitivity and accuracy
improvements are always worthwhile, and in general there is demand for high
sensitivity environmental study and development of inertial platforms, where
small scale transportable instruments should be used. We discuss a novel
technique to analyse the data, aiming at studying and removing those
non-linearity. The analysis is applied to the two ring laser prototypes GP2 and
GINGERINO, and angular rotation rate evaluated with the new and standard
methods are compared. The improvement is evident, it shows that the
back-scatter problem of the ring laser gyros is negligible with a proper
analysis of the data, improving the performances of large scale ring laser
gyros, but also indicating that small scale instruments with sensitivity of
nrad/s are feasible.Comment: 9 pages and 7 figure
Aggregation-Induced Emission of Tetraphenylethylene in Styrene-Based Polymers
In the present work, the preparation of different styrene-based polymer films containing small amounts of TPE and the evaluation of their photoluminescent behaviour is reported. When TPE is dispersed in a poor solvent or in a glassy PS matrix, the arrested intramolecular rotations of its aryls favour the strong emission of light centred at about 455-460 nm. Conversely, TPE fluorescence significantly weakens to a faint signal when good solvents or viscous but not glassy polymer matrices are used. Near-field optical microscopy correlates the fluorescence behaviour with the different matrix morphologies. These results should be able to be used for developing a new tool for polymer traceability
Low-Energy Ions from Laser-Cooled Atoms
We report the features of an ion source based on two-color photoionization of a laser-cooled cesium beam outsourced from a pyramidal magneto-optical trap. The ion source operates in continuous or pulsed mode. At acceleration voltages below 300 V, it delivers some ten ions per bunch with a relative energy spread ΔUrms/U≃0.032, as measured through the retarding field-energy-analyzer approach. Space-charge effects are negligible thanks to the low ion density attained in the interaction volume. The performances of the ion beam in a configuration using focused laser beams are extrapolated on the basis of the experimental results. Calculations demonstrate that our low-energy and low-current ion beam can be attractive for the development of emerging technologies requiring the delivery of a small amount of charge, down to the single-ion level and its eventual focusing in the 10-nm range
Model and phase-diagram analysis of photothermal instabilities in an optomechanical resonator
A study of the phototermal instabilities in a Fabry-Perot cavity is reported, where one mirror consists of a silicon-nitride membrane coated by the molecular organic semiconductor tris(8-hydroxyquinoline) aluminum and silver layers. We propose a theoretical model to describe the back-action associated with the delayed response of the cavity field to the radiation pressure force and the photothermal force. For the case under investigation, the photothermal force response occurs on a timescale that is comparable to that of mirror oscillations and dominates over the radiation pressure force. A phase diagram analysis has been performed to map the stability of the static solution as a function of the control parameters. The model equations are integrated numerically and the time history is compared to experimental measurements of the transmitted field and displacement of the membrane. In both experimental and theoretical data we observe large amplitude oscillations when the cavity length is scanned at a low speed compared to the growth rate of the instability. The perturbation is found to evolve through three regimes: sinusoidal oscillations, double peaks and single peaks followed by a lethargic regime. When the cavity length is scanned in opposite directions, dynamical hysteresis is observed, whose extension has a power law dependence on the scanning rate
Processing and structural properties of random oriented lead lanthanum zirconate titanate thin films
Polycrystalline lead lanthanum zirconate titanate (PLZT) thin films have been prepared by a polymeric chemical route to understand the mechanisms of phase transformations and map the microstructure and elastic properties at the nanoscale in these films. X-ray diffraction, atomic force microscopy (AFM) and ultrasonic force microscopy (UFM) have been used as investigative tools. On one side, PLZT films with mixed-phase show that the pyrochlore phase crystallizes predominantly in the bottom film-electrode interface while a pure perovskite phase crystallizes in top film surface. On the contrary, pyrochlore-free PLZT films show a non-uniform microstrain and crystallite size along the film thickness with a heterogeneous complex grainy structure leading to different elastic properties at nanoscale
Alq3 coated silicon nanomembranes for cavity optomechanics
The optomechanical properties of a silicon-nitride membrane mirror covered by Alq3 and Silver layers are investigated. Excitation at two laser wavelengths, 780 and 405 nm, corresponding to different absorptions of the multilayer, is examined. Such dual driving will lead to a more flexible optomechanical operation. Topographic reconstruction of the whole static membrane deformation and cooling of the membrane oscillations are reported. The cooling, observed for blue laser detuning and produced by bolometric forces, is deduced from the optomechanical damping of the membrane eigenfrequency. We determine the presence of different contributions to the photothermal response of the membrane
Near-field surface plasmon field enhancement induced by rippled surfaces
The occurrence of plasmon resonances on metallic nanometer-scale structures is an intrinsically nanoscale phenomenon, given that the two resonance conditions (i.e., negative dielectric permittivity and large free-space wavelength in comparison with system dimensions) are realized at the same time on the nanoscale. Resonances on surface metallic nanostructures are often experimentally found by probing the structures under investigation with radiation of various frequencies following a trial-and-error method. A general technique for the tuning of these resonances is highly desirable. In this paper we address the issue of the role of local surface patterns in the tuning of these resonances as a function of wavelength and electric field polarization. The effect of nanoscale roughness on the surface plasmon polaritons of randomly patterned gold films is numerically investigated. The field enhancement and relation to specific roughness patterns is analyzed, producing many different realizations of rippled surfaces. We demonstrate that irregular patterns act as metal–dielectric–metal local nanogaps (cavities) for the resonant plasmonic field. In turn, the numerical results are compared to experimental data obtained via aperture scanning near-field optical microscopy
Blending or Bonding? Mechanochromism of an Aggregachromic Mechanophore in a Thermoplastic Elastomer
A straightforward way for the preparation of mechanochromic polymers consists of incorporating a suitable content of a mechanophore in the polymeric matrix either by physical dispersion or via covalent functionalization. Although covalent incorporation may require demanding chemical efforts, this approach can offer significant advantages over physical dispersion. In this work, a common thermoplastic elastomer, styrene-b-(ethylene-co-butylene)-b-styrene triblock copolymer grafted with maleic anhydride (SEBS-MAH), was covalently functionalized with 1-aminomethylpyrene (AMP). MAH functional groups are covalently linked to the ethylene-co-butylene blocks, thus allowing a precise and selective confinement of the chromogenic AMP units in the soft block. Flat, fully conjugated pyrene units undergo the reversible formation of π-πaggregates, readily distinguishable by their red-shifted emission. These aggregates were heavily affected by the application of mechanical stimuli. Despite the low degree of mechanophore functionalization (about 1 wt %), uniaxial deformation of the polymer was reliably monitored via fluorescence and a clear drop in the excimer to monomer emission ratio (IE/IM) was observed starting from 50% of strain. The marked mechanochromism was confirmed by emission lifetime measurements and also by near-field investigations. In addition, the mechanoresponse showed good reversibility after repeated stress-relaxation cycles. Control experiments performed on formulations comprising a physical dispersion of pyrene in unfunctionalized SEBS showed faint excimer emission and a negligible mechanochromic response up to 5 wt % of doping, in substantial agreement with the scanning near-field optical microscopy analysis. An evident drop of the IE/IM ratio occurred for 10 wt % of pyrene, albeit the excimer emission remained predominant even at the highest deformation, being a smaller fraction of pyrene moieties involved. Overall, the covalent approach appeared as an elegant procedure to confine the chromogenic unit in the soft phase of block copolymers and thus to provide an elastomeric film showing a detectable and reversible mechanochromic response with a modest (i.e., ∼1 wt %) amount of pyrene molecules, i.e., 10 times smaller compared to the dispersed system
- …