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Abstract
The occurrence of plasmon resonances on metallic nanometer-scale structures is an intrinsically nanoscale phenomenon, given that

the two resonance conditions (i.e., negative dielectric permittivity and large free-space wavelength in comparison with system

dimensions) are realized at the same time on the nanoscale. Resonances on surface metallic nanostructures are often experimentally

found by probing the structures under investigation with radiation of various frequencies following a trial-and-error method. A

general technique for the tuning of these resonances is highly desirable. In this paper we address the issue of the role of local sur-

face patterns in the tuning of these resonances as a function of wavelength and electric field polarization. The effect of nanoscale

roughness on the surface plasmon polaritons of randomly patterned gold films is numerically investigated. The field enhancement

and relation to specific roughness patterns is analyzed, producing many different realizations of rippled surfaces. We demonstrate

that irregular patterns act as metal–dielectric–metal local nanogaps (cavities) for the resonant plasmonic field. In turn, the numeri-

cal results are compared to experimental data obtained via aperture scanning near-field optical microscopy.
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Introduction
Metal nanostructures capable of producing localized surface

plasmon polaritons (SPPs) are of fundamental relevance to

study near-field nonlinear optical phenomena [1,2]. Particularly

relevant is the strong electric field enhancement on resonance

that can be of special interest for various applications, such as

surface-enhanced Raman spectroscopy (SERS) [3,4], tip-

enhanced Raman spectroscopy (TERS) [5], plasmonic photo-

voltaics [6-8], plasmonic nanosensors [9,10], and near-field

optical theory [2,11,12]. It is commonly accepted that enor-

mous field enhancements at the resonance of the optical

response applied to randomly patterned metal nanostructures

are highly dependent upon the optical excitation of SPPs, which

are ultimately collective optical electromagnetic modes strongly

connected to the nanostructure geometry and size [12]. This is

because at a metal–dielectric interface, large electric field fluc-

tuations can occur for a plasmon resonance frequency, ωr, that

in a two-dimensional system corresponds to the condition

Re(εm(ωr)) = −εd, where εm(ωr) is the dielectric function of the

metal at the resonant frequency and εd is the effective dielectric

constant. In a randomly organized nanostructure, collective

plasmon oscillations are deeply influenced by the locally irregu-

lar geometry, generating hot and cold spots corresponding to

areas of high and low local fields, respectively. Local enhance-

ments in the hot spot regions overcome the average surface en-

hancement by many orders of magnitude (relative magnitudes

up to 105 for the linear regime and up to 1020 for the nonlinear

response have been reported [12]). Hot spots can be detected

because the local enhancement peaks are generally spatially

separated by distances much larger than the typical distance be-

tween neighboring hot spots [12].

The parameter characterizing the enhancement of local field in-

tensity along one specific direction (z in our case, i.e., the or-

thogonal direction with respect to the substrate) is defined

as [12]

(1)

where E0 is the incident electric field. Owing to its nonlinear

character, the enhancement of Raman scattering is quantified by

taking the fourth power of the expression in Equation 1. Here,

we obtain and plot the local enhancement parameter, Γ, for a

wide variety of patterned surfaces. In particular, we will focus

on a specific class of gold nanostructures featuring a rippled

surface (which have already demonstrated their potential as

SERS substrates) as well as their nonlinear optical properties

[13,14].

Although the occurrence of surface plasmon-enhanced non-

linear optical effects is rather well understood, further investiga-

tion into the spectral dependence and magnitude dependence of

the field enhancement as related to surface morphology [2]. Par-

ticular attention has been paid to the electric field distribution,

because distribution and intensity of the hot spots have a

tunable coherence length [13-15]. Not only the patterns, but

also the spatial locations of the electric field peaks strongly

depend on the frequency, whereby the Γ parameter typically

decreases with the applied frequency. By changing the frequen-

cy, one can excite different nanometer-sized hot spots on a film.

This effect has high potential for various applications in SERS,

plasmon-enhanced photocatalysis and sensing applications

[6-15]. In addition, polarization plays a fundamental role, in

particular whenever the nanostructure morphology shows

anisotropy at the local scale. Polarization can induce strong

confinement of plasmons in the resonance region in close corre-

lation with the local surface morphology, characterized by a

pattern of hills and valleys. As a consequence, an accurate

knowledge of the spatial distribution of large field enhance-

ments requires an accurate knowledge of the nanostructure mor-

phology. This is particularly true for the spatial distribution of a

random pattern composed of a texture of hills and valleys.

Rippled surfaces represent a special case of rough surfaces.

Ripple formation due to light–matter interaction, for example,

using short laser pulses, is highly dependent on the laser irradia-

tion conditions (angle of incidence, polarization, laser power,

scanning speed – only to cite the most important factors), mate-

rial properties, environmental conditions, temperature, etc. It is

commonly accepted that ripples formed as a consequence of

light–matter interaction present a periodicity that is dependent

on the polarization of the incident light. In addition, the forma-

tion of ripples by ultrashort laser pulses (<1 ps) enables fabrica-

tion on solid materials ranging from metals to transparent

glasses and crystals [16]. As a consequence, the interest in the

optical properties of rippled surfaces has a long history [17]. On

the nanoscale, nanofabrication techniques, such as conven-

tional lithographic methods or scanning probe techniques, allow

for the production of predesigned rough surfaces, where simple

and prescribed shapes can be easily produces such as rectan-

gular or sinusoidal shapes, for example. Random surfaces, on

the contrary, are stochastic and are a result of a (or several)

random process(es). Nanofabrication techniques based on

growth processes or self-organization have been demonstrated

to be an excellent and relatively low-cost alternative, allowing

maskless patterning of macroscopic surface areas [18]. Many of

such techniques lead to typical patterns including fractal sur-

faces. Regular, or nearly regular, nanoscale ripples have width

and height much smaller than the wavelength of typical

plasmon resonances.
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Different top-down or bottom-up fabrication techniques have

been introduced to produce metal nanostructures with active

plasmonic reactivity [14]. For example, ion beam sputtering

(IBS) is a widely employed bottom-up technique that is a quick

and low cost method for the synthesis of both large area arrays

of self-organized nanowires for SERS molecular detection

[14,19,20] and plasmon-enhanced photon harvesting in the

vis–NIR range [14,21]. Other techniques widely employed to

produce patterned metal nanostructures are top-down litho-

graphic techniques such as electron beam lithography and nano-

sphere lithography [22-24].

In this paper, we simulate the conditions of SPP field enhance-

ment and the formation of dark and hot, or bright spots, for a

wide variety of patterned surfaces. The patterned surfaces are

numerically generated, and the effects of roughness on the near-

field scattered electric fields for different wavelengths falling in

the optical range and for s- or p-polarization are evidenced

using a system of integral equations, resulting from the applica-

tion of Green’s theorem to the electromagnetic field equations.

Modeling
Influence of surface roughness on
interference patterns of surface plasmons:
near-field optical properties
The need to include the surface roughness into numerical

models for plasmonic systems restricts the choice of numerical

near-field methods [25-28]. Commonly recognized methods to

describe the roughness of scattering objects include the finite el-

ement method (FEM) [29], the finite difference time domain

(FDTD) method [30], the coupled wave method (CWM) [31],

the discrete dipole approximation (DDA) [32,33], for which the

meshing of the rough surface may be critical for computation.

Our approach follows the so-called surface integral equations

(SIEs) [34,35] approach. Initially, we implemented the SIEs

based on the boundary element method (BEM), where ad-hoc

integral equations for the surface charge and current density

must be considered [36]. A second approach was based on a

formulation of SIEs, resulting from application of Green’s

theorem on the scattering volumes directly to the exact electro-

magnetic equations [37]. The latter is the approach followed to

derive the numerical results presented in this paper [38]. The

basic advantage of an approach based on the dyadic Green’s

function is that the surface under investigation can be

discretized into small volume elements, and hence, the optical

response of two different volumes (also for complex morpholo-

gies) is mediated by the dyadic Green’s function [39].

Near-field optical properties of rough metallic surfaces can be

studied by illuminating the sample with an external light source

at frequency ω. The scattering geometry is illustrated in

Figure 1A where a rough metal surface with z = h(x,y) denotes

the substrate, and where the semi-infinite metal occupies the

lower half-space z ≤ h(x,y) which is characterized by an

isotropic, homogeneous, frequency-dependent dielectric func-

tion ε<(ω). The medium of incidence, z > h(x,y), is character-

ized by a frequency-dependent dielectric function ε>(ω), and a

monochromatic, linearly polarized, incident beam of frequency

ω is assumed to impinge onto the interface at an angle θ,

measured counterclockwise with respect to the positive z axis.

Figure 1: Schematic of the scattering geometry with the electromag-
netic field vectors for linear p- and s- polarization. The image repre-
sents the typical morphology of the substrates in our calculations.

We now focus on the electric field calculation for the case of

p-polarization. In order to obtain the electric field components,

we can start with the Maxwell’s equation:

(2)

where the magnetic field in our system has the form:

(3)

and the electric field is

(4)

Given ,  and
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(5)

(6)

(7)

a monochromatic incident field (Gaussian beam with full-width

half-max of W) of frequency ω can be expressed as in

Equation 5 (considering, for the sake of simplicity, a p-polar-

ized field) [40].

Since a time harmonic dependence e−iωt is assumed, the func-

tional dependence on frequency will be omitted. Using Equa-

tion 2, and inserting the magnetic field component from Equa-

tion 3, we can write the electric field components as shown in

Equation 6.

In Equation 6, the derivation of the Green’s function and the

external potential, respectively, are made with respect to the

unit vector along z.

In Cartesian coordinates Equation 7 is the normal derivative

to the rough surface with z = h(x), defined by the relation

, where  is a unit vector for

In the near-field, when r is very close to the surface, noninte-

grable singularities can appear associated with Green’s func-

tions derivatives. A way to work around this problem has been

proposed by Sanchez-Gil et al. [40], where the evaluation of the

electric field at the surface itself is made. In this case a simple

relation connecting the normal and tangential components of the

electric field with the surface magnetic field and its normal de-

rivative can be found. The surface electric fields are obtained

from the surface magnetic fields as follows [35,40]:

(8)

where

The calculation of the derivative Green’s function in Equation 6

requires an adequate strategy. The rough surface Green’s func-

tion is given by the sum of the coherent and incoherent contri-

butions, where G0 is the coherent contribution and Gf is

addressed by the random roughness. The coherent contribution

can be expressed by [41]:

(9)

where  is the Hankel function of first kind and order zero,

and ε(ω) is the metal electric permittivity (in our case, gold has

been considered) described by the Drude model,

(10)
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where ωp = 2.183 × 1015 s−1 is the free-electron plasma fre-

quency and γ = 1.41 × 1014 rad·s−1 is the relaxation rate. A

possible approach to calculate the incoherent contribution is the

so-called small-roughness approach, previously developed by

Ishimaru et al. [42]. Following this approach, we develop a

smoothing first-order approximation for the small-roughness

regime. In the small-roughness regime, the Green’s function is

given by the sum of the coherent contribution, G0, and the inco-

herent, fluctuating term, Gf [42]

(11)

where the fluctuating term Gf, can be developed by expanding

the Green’s function around the surface height h(x). In Support-

ing Information File 1, we give a derivation of the fluctuating

term for the Green function (Equation 11). Here, we summarize

only the result

(12)

where κr denotes a spatial wavevector, and in particular, is the

root of Θ(κr) + 1 = 0 (Θ is a function linking the reflection coef-

ficient to the spectral density and plasmon wavevector, see Sup-

porting Information File 1), and α a numerical factor. The com-

plete derivation of Equation 12 is detailed in Supporting Infor-

mation File 1. It is evident that the singularities present in Gf

and corresponding to the eigenmodes drive the plasmon reso-

nance and the field enhancements. In fact, the pole accounts for

all of the contribution to Green’s functions from the rough sur-

face. Only under small-roughness conditions G0 ≈ Gf, while in

general Gf >> G0.

Now, we must define the ripple surfaces providing us the

profile h(x) that we will use in the SIE picture. Here, we are

using the notation that , where  and  are unit

vectors along the x and y directions. Since many patterning

techniques, including ballistic deposition processes (such as

molecular beam epitaxy or IBS) or plasma etching, are charac-

terized by dynamic roughening that constitutes an important

class of nonequilibrium phenomena [20,43]. In such systems,

the dynamic roughening is generated by the fluctuation of in-

coming particles, and the rough surface progressively involves a

columnar instability growth which generates typical patterns of

grooves and hills, or transversal instability, which leads to the

generation of longitudinal ripples or, again, longitudinal insta-

bility which leads to transversal ripples.

In the last decades several models have been proposed for

describing the dynamic behavior of growing surfaces and corre-

sponding patterns. In all such methods, the common approach is

to asymptotically reduce the partial differential equations

governing the complex growing dynamics to a sample equation

for the interface [44,45]. One critical point in all such methods

is represented by the choice of parameters to be included in the

partial differential equations, and in many cases, such parame-

ters must be chosen empirically. A unique possibility to simu-

late a wide range of rippled surfaces as generated by dynamic

roughening is given by the Kuramoto–Sivashinsky (KS) equa-

tion [46]. This equation describes a near planar surface which is

marginally long-wave unstable. We will use the KS equation to

simulate the rippled surface with appropriate parameters to

obtain the desired pattern. All details on the rippled surface

simulated with a KS equation will be described in the next

section. The simulated surface can be characterized by a variety

of parameters, including, for instance, root mean square (rms),

amplitude distribution function (i.e., the function that gives the

probability that a roughness profile has a certain height at a po-

sition), autovariance and autocorrelation functions. The covari-

ance measures how well two or more heights match one

another. Simple analytical expressions for the height–height

correlation can be obtained using a Gaussian function. The

correlation gives a measure of the in-plane correlation length

between the features detected directly in the topography sur-

faces. The surface profile function h(x) is a growing stochastic

process described by the statistical properties

(13)

where the angular brackets denote an average over the ensem-

ble of realizations of the surface profile, and δ2 is the mean-

square offset of the surface from perfect flatness, δ2 = <h2(x)>,

δ2 = 0 for a flat surface. Because the surfaces deposited by ion-

beam sputtering (IBS) generally show a fractal structure, the

function C in Equation 13 is chosen to be Gaussian, that is, a

special case of a fractal surface with the Hurst exponent equal

to one [47]:

(14)

where a is known as the transverse autocorrelation length, as it

describes the mean length between two hills or two valleys on

the surface. Since the profile h(x) is a Gaussian-distributed

random variable: (a) the average of the product of an odd num-

ber of factors of the profile with the same arguments vanishes,
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and (b) the average of the product of an even number of factors

of the profile is given by the sum of the products of the aver-

ages of h(x)’s paired two-by-two in all possible ways. In turn,

the effects of roughness can be explored taking into account

wavevectors, which is made introducing the Fourier transform

(FT) of the surface profile function. The FT of the autocovari-

ance function gives the power spectral density function that

shows the strength of the height variations as a function of fre-

quency.

Results and Discussion
The local field enhancement as given by Equation 1 is calcu-

lated by integrating Equation 6 on simulated rippled surfaces,

where a suitable Green’s function (Equation 11) has been previ-

ously evaluated.

Essentially, three factors play a fundamental role in the en-

hancement of the electric field: the geometry, the applied wave-

length and the polarization. The geometry defines the shape

and the distribution of the irregular patterns which act as

metal–dielectric–metal local nanogaps for the resonant plas-

monic fields. In turn, the rippled shape of the surface corruga-

tion makes the optical properties highly dependent on the polar-

ization which can be switched between two directions, thus p-

or s-polarizations have been considered.

Rippled surfaces describing growth processes subsequent to

deposition rates as, for example, with the IBS technique or other

equivalent patterning methods is a nonequilibrium process

where a two-dimensional surface is defined by the height func-

tion h(x,y,t), whose evolution in time is monitored. The physics

of the growth and of the subsequent patterning process can be

described by a damped Kuramoto–Sivashinsky (DKS) equation

[45-47]. We propose a finite-difference semi-implicit splitting

scheme of second order in time and space to numerically solve

the DKS equations, with phenomenological parameters. A

Matlab code to solve the DKS and corresponding field enhance-

ment has been written ad hoc. The stability of the numerical

scheme is verified with time step and grid spacing tests for the

pattern evolution. Surface realizations of length L = 2–3 μm

consisting of N = 2048 sampling points were generated using a

DKS equation with empirical parameters [43,44]. The resolu-

tion (N = 2048) is such that the minimum size is nearly 1 nm

and the groove–groove distance (an equivalent of periodicity for

more regular surfaces) is of approximately 100–200 nm (the

autocorrelation length a in Equation 9) and height of 10–30 nm.

The Au skin depth d = (c/ω)(−εm)−1/2 in the optical range varies

between approximately 20–50 nm in the vis-NIR range, so that

the rippled surface can be considered a homogenous film of

corrugated gold presenting a metal–dielectric interface with the

air. The intercept of a Gaussian incident beam with the plane of

the mean surface is kept constant regardless of the angle of inci-

dence (W/cosθ0 = L/4, and θ0 = 45°) [38]. This intercept illumi-

nates a sufficiently large region of the surface in terms of the

incident wavelength range, nominally varying from 400 to

900 nm. The surface texture of the rippled surfaces considered

here is composed of the interplay of patterns made of grooves,

hills and valleys showing some degree of anisotropy. Align-

ment effects induced, for example, by the anisotropic ion

bombardment can in fact take place, leading to the occurrence

of one preferential direction. The surface plasmon polaritons are

strongly dependent on such patterns and their characteristic

lengths. In addition, linear polarization plays an important role

because the irregularity of the grooves makes the polarization

effectively only linear on the local scale.

Once the ripple geometry can be reproduced, we can map the

field enhancement factor that represents the hot spots eventu-

ally occurring for a specific illumination condition. In Figure 2,

we consider two different rippled morphologies, (A) and (C),

with corresponding SPP optical maps with enhancement factor

Γ, shown in (B) and (D) respectively, for an applied wave-

length λ = 785 nm under p-polarization conditions. Figure 2B

and Figure 2D ultimately represent the distribution of the hot

spots. Both reconstructed surfaces have a 2.5 × 2.5 μm area.

Due to the highly localized nature of the hot spots, this area is

representative of their spatial distribution. In the case of

Figure 2A, we consider an intergroove distance (equivalent of

the periodicity for more regular surfaces) with an average value

around 150 nm and a height of 15–20 nm. In the case of

Figure 2C, the height is approximately 10−20 nm. The Γ factor

is peaked around ≈107 and ≈103 for the surface of Figure 2B

and Figure 2D, respectively.

In particular, Figure 2A,C shows that rippled surfaces featuring

a quasi-regular pattern of stripes, or nanowires, present a strong

enhancement factor: the occurrence of two main peaks in

Figure 2A makes impossible to detect (in the dynamics chosen

for the representation) the weaker peaks. On the contrary, the

holed rippled surface (Figure 2C) leads to a smaller enhance-

ment factor by six orders of magnitude. Different from spheri-

cal geometries or regular nanowires, rippled surfaces, as in

Figure 2, give the possibility to study the enhancement factor on

surfaces presenting a wide range of nanogaps. It is well known

that the gap between grooves plays a fundamental role in

controlling the enhancement factor [12,48,49]. As a conse-

quence, the random distribution of nanogaps in terms of shape

and depth gives a unique possibility to study the distribution of

field enhancement.

To study the effects of local nanogaps, we first consider the role

of the wavelength of the illumination field. In Figure 3, it is
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Figure 2: Results of the simulations described in the text. (A) We consider an intergroove distance (equivalent of the periodicity for more regular sur-
faces) with an average value around 150 nm and a height of 15−20 nm and (B) is its corresponding optical map with a maximum Γ factor of ≈107.
(C) Same conditions of (A) with the height set to approximately 10−20 nm and (D) is its corresponding optical map with a maximum Γ factor of ≈103.

Figure 3: Maps of enhancement factor Γ for a realization of a rippled surface for (A) a wavelength of λ = 480 nm, with a maximum Γ ≈ 105, and
(B) λ = 785 nm, with a maximum Γ ≈ 1011.

shown a comparison between the enhancement factor found for

a rippled surface upon illumination at 480 and 785 nm

(Figure 3A and Figure 3B, respectively). We are solely inter-

ested in demonstrating the difference and contrast for different

frequencies, so we have chosen two convenient emission lines

of our laser.

The correspondence between patterns of nanogaps, localized

hot spots and polarization can be described by invoking the idea

that the nanogaps are nanocavities able to trap the light at the

cavity mode frequencies, and the physics of such light–matter

interactions can be conveniently described in terms of the reso-

nant cavity quasinormal modes (QNMs) [50]. QNMs are solu-

tions of Maxwell’s equations that are associated with a com-

plex eigenfrequency , where the imagery part is a

measure of the energy leakage in the system, quantified by the

quality factor Qn = ωn/2γn. To measure the spatial extent of

localized QNMs, i.e., the surface occupied by the hot spot

modes and their localization transition, we use the so-called

inverse participation ratio, χ, that is also used in the theory of

Anderson localization, defined as [51]

(15)

For spatially localized modes, χ is independent on the sample

size L, whereas for extended modes, χ scales as L−2 [51]. In ad-

dition, for localized states, at a given point r and a given fre-

quency ω, the electric field is dominated essentially by one

mode, and the probability to find more than one mode given a

high electric field is very small [52]. The inverse participation

ratio is χ ≈ (Nξ2)−1, where N is the number of hot spots

involved in the localized modes and ξ their characteristic local-

ized length. A localized mode is characterized by N ≈ 1 hot
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(16)

Figure 4: (A) The profile is extracted from the Figure 1A and represents a type of an aligned array of nanogaps. (B) The effect of polarization where
the dashed curve (green) represents the field enhancement for an across-the-gap transverse polarization, with enhancement factor peak at ≈1013,
and the dashed-dot curve (red) denotes the longitudinal polarization, enhancement peak ≈102. The field enhancement on the y-scale is not to scale.

spots with localized length ξl whereas delocalized modes

involve N >> 1 hot spots, with average length ξ >> ξl so that for

localized modes χ ≈ ξl
−2. Carminati et al. have shown that high

values of the χ parameter correspond to large fluctuations of the

local density of states (LDOSs) [52]. Each QNM is described

by the Green’s functions, Equation 9 and Equation 12, that are

closely related to the LDOSs. The LDOSs represents the weight

of all normalized QNMs at a certain point of space for a certain

light frequency and can be calculated by Equation 16.

In Equation 16 G is the Green tensor, Δωn is the spectral width

of the mode and |n·E(r)|2 = I(r) its local intensity. Equation 16

summarizes the physical properties of nanogaps, showing that

the electromagnetic field is enhanced when confined to a small

volume. Hence, nanogaps can be considered as metal–insu-

lator–metal (MIM) cavities characterized by the cavity Q-factor

and the effective mode volume Veff, so that a large Q/Veff ratio

results in enhanced light–matter interaction, as typically quanti-

fied by the LDOS.

Let us consider a one-dimensional array of coupled QNMs,

where the QNMs are exponentially localized with localization

centers on the nanogaps. It is well known that as a surface

plasmon approaches a narrow gap, its group velocity decreases

and its electric field increases. Let us treat the plasmons as

damped harmonic oscillators linearly coupled and with

damping rate γ(t) and ω(t) as the instantaneous QNM

frequency. The temporal evolution of the field is given by

, which decays exponen-

tially given γ > 0. Since the plasmon resonances correspond to

poles of Green’s function (see Supporting Information File 1),

near to such poles, Green’s functions (and consequently, local

fields, Equation 6), becomes large. A complex function of such

resonances can be found from the position of the corresponding

poles in the complex plane frequency ω vs spectral width γ.

Assuming γ > 0, we assume a negative sign of the imaginary

part of the physical surface frequency. During the field en-

hancement, the plasmon changes its parameters in space [53],

while the QNM frequency is supposed to change monotoni-

cally with a decay rate . If both ξ and γ are con-

stants, the time-dependent plasmon amplitude E(r,t) is now

proportional to e(ξ−γ)t with a competition between the frequen-

cy decay rate ξ and the damping rate γ. If ξ−γ > 0, the ampli-

tude of field increases with time. In addition, the plasmon en-

hancement can be amplified if they are in-phase at a nanogap

(hot spots), while the subsequent nanogaps could be out-of-

phase, showing a type of dark spot. The spatial distribution of a

hot spot surrounded by dark spots is represented in Figure 4.

Another critical factor that affects the localized hot spots is the

polarization [13]. Since the plasmon resonance depends on the

restoring force resulting from a noncompensated surface charge,

this force depends ultimately on the shape of the topography

profile and polarization, i.e., it is ruled by the geometrical

anisotropy. We can say that the applied polarization of the elec-

tric field drives the plasmon resonance to be a geometrical po-

larization. Since the hot spots are strongly dependent on the

charge density fluctuations due to rippled surfaces, the effect of
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the incident light polarization plays a fundamental role. Polari-

zation studies have been performed on plasmonic nanostruc-

tures, see, e.g., [54]. While theoretical models have confirmed

the experimental observations limited only to perfectly smooth

nanogaps with idealized geometry [54,55], other investigations,

based essentially on tip-enhanced measurements, take advan-

tage of the so-called across-the-gap polarization, assuming

that the strongest enhancement turns up with this polarization

direction [54,56].

In our rippled surfaces, light with transverse polarization excites

complex plasmon modes with greatly enhanced local fields only

for nanogaps that for a local shape reproduce the across-the-gap

transverse polarization. Moreover, we found a surprising addi-

tional effect: the shape of the gap, but in particular, the depth

and width (wall distance) joined to the surrounding gaps play a

leading role in the field enhancement. This is clearly a non-

linear effect where the surface geometry is able to confine

charge on the walls of a single gap, simultaneously depleting

the charge density from the surrounding gaps. Such a nonlinear

effect is depicted in Figure 4. We consider a profile extracted

from a rippled surface as in Figure 2. Hence, we consider a po-

larization that is prevalently transverse, or longitudinal to the

profile. Prevalently means that the polarization, due to irregular

ripple spatial configuration, is a mixing of s- and p-polarized

fields, where the s- or p-direction is referred to the principal

axis of the irregular ripples.

To gain insight into the origin of the field enhancement inside

the nanogaps, we have computed the local field in the region

where the enhancement is the highest, Figure 4. In such

nanogaps, the field is mainly concentrated at the middle of the

gap. On resonance, surface plasmons are coupled into the gap to

excite a localized QNM [57]. In addition, open nanogaps offer

also a unique environment to study SPP propagation. SPP prop-

agation is a conceptually different phenomenon from the local-

ized plasmon resonance [58]. However, if the metal–dielec-

tric–metal nanogaps could also represent a sort of waveguide

mode for the SPP propagation, the rough surface seems to have

a leading role for the formation of the field enhancements in

contrast to SPP propagation. A unique description of SPP prop-

agation, QNMs in random nanogaps and localized plasmons is

highly desirable. This effort will be the natural extension of the

results described in this paper.

In turn, the spatial distribution of the nanogaps plays clearly a

fundamental role for the formation of hot spots and their rela-

tion with subsequent dark modes [59]. A roughness surface con-

figuration with deep ripples is favorable for the presence of

many regions with high Γ factors. However, the coupling and

the interface with a metallic counterface could reduce the

apparent roughness, reducing the field enhancement. This is the

case of experimental configurations where an aperture SNOM is

used to detect hot spots. The next section is devoted to treat this

interesting case.

Comparison with aperture SNOM
experimental measurements
The possibility to correlate topography and optical maps is a

key point in assessing localized SPPs and in interpreting the

origin of the local optical properties. The capability to correlate

topography and optical maps showing the surface electric field

is also the principle feature of the SNOM technique. As a

consequence, the possibility to perform SNOM measurements

on rippled surfaces is a great stimulus to gain insight into how

hot spots can be distributed on corrugated surfaces and to locate

them relative to the sample morphology.

SNOM can be subdivided into aperture (or apertureless) scat-

tering-SNOM (s-SNOM). Scattering-type SNOM combines the

resolution of atomic force microscopy with the sensitivity of

optical spectroscopy. In such a configuration, a sharp metal tip

is brought within close proximity to a sample surface and illu-

minated by an external source [60,61]. Following the operating

principles as in s-SNOM functionality, tip-enhanced Raman

spectroscopy (TERS) involves keeping a metal nanostructure

(tip) at a small distance above a sample, providing a highly

localized field enhancement. Essentially, in this technique, a

single-plasmon-resonant metallic nanostructure is provided in

the form of a scanning probe tip of suitable material and geome-

try. Although TERS has been successfully applied in many ap-

plications, resulting in a powerful combination of SERS with

Raman–AFM capability, our experimental reference is the aper-

ture-based SNOM technique.

Aperture SNOM in collection mode is, in principle, an excel-

lent tool to identify the sites of local field enhancement (hot

spots) and to locate them relative to the sample morphology

[62]. There are, however, a few important aspects that must be

carefully taken into account when using the SNOM for visual-

izing hot spots. One of such aspects is the occurrence of rough

surfaces, as is typical for rippled samples. When rippled sur-

faces are investigated, as in our case, the large physical size of

the probe apex prevents the topography to be precisely tracked.

Since the electric field enhancement due to plasmon resonance

depends drastically on the distance from the surface, the probe-

to-surface distance is even larger when nanometer-sized

grooves, or valleys, are to be analyzed. Ultimately, the spatial

resolution of an aperture SNOM measurement is dictated by the

size of the tip aperture, which is typically 50 nm diameter.

Consequently, strong nanometer-sized hot spots can result in

broader and weaker features.
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Figure 5: (A) Image of rippled gold surface, 2.5 × 2.5μm and (B) corresponding map of the enhancement factor, maximum Γ ≈ 1012, λ = 750 nm.
(C) The equivalent map as in (B) but observed by an aperture SNOM measurement (probe of 50 nm diameter) operating in collection mode and posi-
tioned at a constant distance of 10 nm over the scanned surface, Γ ≈ 2–5, permittivity of the environment, ε = 1 (air).

Hence, aperture SNOM requires the average over a surface cor-

responding to the aperture area, so that Equation 1 is now

(17)

where the brackets denote both the average over the area corre-

sponding to the aperture of the SNOM probe and average time

of acquisition for any point, normally on the order of millisec-

onds. In addition, the z-component of the field observed by an

aperture SNOM is proportional to E0(p•n)(n•e)exp(−z/d), where

E0 and p are the electric field amplitude and the polarization

direction for the illuminating light, respectively, d is the z-depth

height of the evanescent electromagnetic field, z the SNOM

probe–sample distance and n represents the normal vector to the

corrugated surface [38]. The terms p•n, and n•e describe the

role of the polarization on the efficiency of surface plasmon ex-

citation and the cosine angular distribution of the radiation, re-

spectively [63].

The limitations of an aperture SNOM experiment operating in

collection mode to investigate hot spots become useful when

the system probe plus rippled surface in the condition of the

so-called small-roughness limit is analyzed [42]. In Figure 5C

the optical map of a rippled surface as recorded by an aperture

SNOM measurement is simulated. The measurement simula-

tion provides an aperture SNOM with a probe of 50 nm in di-

ameter, operating in collection mode and positioned at a con-

stant distance of 10 nm over the scanned surface. The external

illumination is at λ = 750 nm in order to have a direct compari-

son with corresponding experimental results [62,64]. The

results have been obtained by adopting the small-roughness

approximation for the Green’s function.

The results, as shown in Figure 5, display clearly that the aper-

ture SNOM strongly perturbs the hot spot shape and intensity

generated when the rippled surface is illuminated by radiation

of an appropriate wavelength. The role of the SNOM probe,

essentially a metal ring of 50 nm diameter with a dielectric fiber

inside, is to reduce the enhancement factor while increasing the

number local hot spots, Γ ≈ 2–5, relative to the grooves of the

rippled surface. The strong correlation between local hot spots

and the rippled pattern evidenced by the SNOM technique can

be further usefully employed for the characterization of the

optical properties of surface plasmons of random surfaces,

given that their tuning is also intrinsically connected to the

ripple texture.

Conclusion
Resonances on surface metallic nanostructures are often found

experimentally by probing the structures under investigation

with radiation of various frequencies following a trial-and-error

method. A general technique for the tuning of these resonances

is strongly preferable.

In this paper, we demonstrated the basic connection between the

surface-patterned local nanogaps and the general tuning of sur-

face plasmon resonances, both as a function of wavelength and

polarization. The effect of nanoscale roughness on such reso-

nances of randomly patterned gold films has been numerically

investigated. The field enhancement and its dependence on spe-

cific roughness patterns was analyzed producing many differ-

ent realizations of rippled surfaces.

The ability to reproduce the rippled surfaces led us to opt for a

surface integral equations formulation resulting from the appli-

cation of Green’s theorem on the scattering surfaces directly to

the exact electromagnetic wave expression, and hence, the

ability to evaluate the corresponding point-by-point enhance-

ment factors. This approach has the advantage that it allows for

a much finer spatial discretization, and hence, an improved

ability to correlate the hot spots to the surface morphology. The

main disadvantage of our method is that since is applied in the

frequency domain, we are able to treat only time-harmonic
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domains, and the solution has to be determined at each single

frequency of interest.

We demonstrated that irregular patterns act as metal–dielec-

tric–metal local nanogaps for the resonant plasmonic fields. In

turn, the numerical results are compared to experimental data

obtained via aperture scanning near-optical microscopy on the

spatial localization of the hot spots. Our study could contribute

to a better understanding of the role of metallic nanoscale

roughness to tune surface plasmon induced hot spots.

Supporting Information
Supporting Information File 1
Additional Green’s function calculations.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-8-97-S1.pdf]
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