782 research outputs found

    Towards the absolute planes: a new calibration of the Bolometric Corrections and Temperature scales for Population II Giants

    Get PDF
    We present new determinations of bolometric corrections and effective temperature scales as a function of infrared and optical colors, using a large database of photometric observations of about 6500 Population II giants in Galactic Globular Clusters (GGCs), covering a wide range in metallicity (-2.0<[Fe/H]<0.0). New relations for BC_K vs (V-K), (J-K) and BC_V vs (B-V), (V-I), (V-J), and new calibrations for T_eff, using both an empirical relation and model atmospheres, are provided. Moreover, an empirical relation to derive the R parameter of the Infrared Flux Method as a function of the stellar temperature is also presented.Comment: 10 pages, 12 .ps figures, MN Latex, accepted by MNRA

    Raymond Carr (1919-2015) In Memoriam

    Get PDF

    La historia en Oxford hacia 19701

    Get PDF
    Sin resume

    HST - WFPC2 photometry of the globular cluster ngc 288: binary systems, blue stragglers and very blue stars

    Get PDF
    We report on new WFPC2 observations of the globular cluster NGC 288, focusing our attention on peculiar stars. A very pronounced binary sequence, paralleling the ordinary Main Sequence (MS) is clearly observed in the Color Magnitude Diagram (CMD) and a huge relative fraction of Blue Straggler Stars is measured. The dataset offers the opportunity of studying the evolution of a large population of binaries (and binary evolution by-products) in a low density environment, where the evolution of such systems is not dominated by collisions and encounters. Three (very) Extreme Horizontal Branch Stars have been found, all lying outside of the cluster core.Comment: 6 pages, 3 figures, in press in the chemical evolution of the Milky Way: stars versus clusters, F. Matteucci and F. Giovannelli eds, Kluwe

    A Population of Massive Globular Clusters in NGC 5128

    Full text link
    We present velocity dispersion measurements of 14 globular clusters in NGC 5128 (Centarus A) obtained with the MIKE echelle spectrograph on the 6.5m Magellan Clay telescope. These clusters are among the most luminous globular clusters in NGC 5128 and have velocity dispersions comparable to the most massive clusters known in the Local Group, ranging from 10 - 30 km/s. We describe in detail our cross-correlation measurements, as well as simulations to quantify the uncertainties. These 14 globular clusters are the brightest NGC 5128 globular clusters with surface photometry and structural parameters measured from the Hubble Space Telescope. We have used these measurements to derive masses and mass-to-light ratios for all of these clusters and establish that the fundamental plane relations for globular clusters extend to an order of magnitude higher mass than in the Local Group. The mean mass-to-light ratio for the NGC 5128 clusters is ~3+/-1, higher than measurements for all but the most massive Local Group clusters. These massive clusters begin to bridge the mass gap between the most massive star clusters and the lowest-mass galaxies. We find that the properties of NGC 5128 globular clusters overlap quite well with the central properties of nucleated dwarf galaxies and ultracompact dwarf galaxies. As six of these clusters also show evidence for extratidal light, we hypothesize that at least some of these massive clusters are the nuclei of tidally stripped dwarfs.Comment: ApJ Accepted, 15 pages, 9 figures, uses emulateapj.st

    Photometry of the Globular Cluster NGC 5466: Red Giants and Blue Stragglers

    Full text link
    We present wide-field BVI photometry for about 11,500 stars in the low-metallicity cluster NGC 5466. We have detected the red giant branch bump for the first time, although it is at least 0.2 mag fainter than expected relative to the turnoff. The number of red giants (relative to main sequence turnoff stars) is in excellent agreement with stellar models from the Yonsei-Yale and Teramo groups, and slightly high compared to Victoria-Regina models. This adds to evidence that an abnormally large ratio of red giant to main-sequence stars is not correlated with cluster metallicity. We discuss theoretical predictions from different research groups and find that the inclusion or exclusion of helium diffusion and strong limit Coulomb interactions may be partly responsible. We also examine indicators of dynamical history: the mass function exponent and the blue straggler frequency. NGC 5466 has a very shallow mass function, consistent with large mass loss and recently-discovered tidal tails. The blue straggler sample is significantly more centrally concentrated than the HB or RGB stars. We see no evidence of an upturn in the blue straggler frequency at large distances from the center. Dynamical friction timescales indicate that the stragglers should be more concentrated if the cluster's present density structure has existed for most of its history. NGC 5466 also has an unusually low central density compared to clusters of similar luminosity. In spite of this, the specific frequency of blue stragglers that puts it right on the frequency -- cluster M_V relation observed for other clusters.Comment: 51 pages, 21 figures, 1 electronic table, accepted to Ap

    A New Version of Reimers' law of Mass Loss Based on a Physical Approach

    Full text link
    We present a new semi-empirical relation for the mass loss of cool stellar winds, which so far has frequently been described by "Reimers' law". Originally, this relation was based solely on dimensional scaling arguments without any physical interpretation. In our approach, the wind is assumed to result from the spill-over of the extended chromosphere, possibly associated with the action of waves, especially Alfven waves, which are used as guidance in the derivation of the new formula. We obtain a relation akin to the original Reimers law, but which includes two new factors. They reflect how the chromospheric height depends on gravity and how the mechanical energy flux depends, mainly, on effective temperature. The new relation is tested and sensitively calibrated by modelling the blue end of the Horizontal Branch of globular clusters. The most significant difference from mass loss rates predicted by the Reimers relation is an increase by up to a factor of 3 for luminous late-type (super-)giants, in good agreement with observations.Comment: 12 pages, 4 figures, accepted by ApJ Letter

    Correlations of Globular Cluster Properties: Their Interpretations and Uses

    Get PDF
    Correlations among the independently measured physical properties of globular clusters (GCs) can provide powerful tests for theoretical models and new insights into their dynamics, formation, and evolution. We review briefly some of the previous work, and present preliminary results from a comparative study of GC correlations in the Local Group galaxies. The results so far indicate that these diverse GC systems follow the same fundamental correlations, suggesting a commonality of formative and evolutionary processes which produce them.Comment: An invited review, to appear in "New Horizons in Globular Cluster Astronomy", eds. G. Piotto, G. Meylan, S.G. Djorgovski, and M. Riello, ASPCS, in press (2003). Latex file, 8 pages, 5 eps figures, style files include

    High Performances Corrugated Feed Horns for Space Applications at Millimetre Wavelengths

    Full text link
    We report on the design, fabrication and testing of a set of high performance corrugated feed horns at 30 GHz, 70 GHz and 100 GHz, built as advanced prototypes for the Low Frequency Instrument (LFI) of the ESA Planck mission. The electromagnetic designs include linear (100 GHz) and dual shaped (30 and 70 GHz) profiles. Fabrication has been achieved by direct machining at 30 GHz, and by electro-formation at higher frequencies. The measured performances on side lobes and return loss meet the stringent Planck requirements over the large (20%) instrument bandwidth. Moreover, the advantage in terms of main lobe shape and side lobes levels of the dual profiled designs has been demonstrated.Comment: 16 pages, 7 figures, accepted for publication in Experimental Astronom

    An HST/WFPC2 survey of bright young clusters in M31. I. VdB0, a massive star cluster seen at t ≃ 25 Myr

    Get PDF
    Aims. We introduce our imaging survey of possible young massive globular clusters in M31 performed with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). We obtained shallow (to B ~ 25) photometry of individual stars in 20 candidate clusters. We present here details of the data reduction pipeline that is being applied to all the survey data and describe its application to the brightest among our targets, van den Bergh 0 (VdB0), taken as a test case. Methods. Point spread function fitting photometry of individual stars was obtained for all the WFPC2 images of VdB0 and the completeness of the final samples was estimated using an extensive set of artificial stars experiments. The reddening, the age and the metallicity of the cluster were estimated by comparing the observed color magnitude diagram (CMD) with theoretical isochrones. Structural parameters were obtained from model-fitting to the intensity profiles measured within circular apertures on the WFPC2 images. Results. Under the most conservative assumptions, the stellar mass of VdB0 is M> 2.4 x 10^4 M_☉ , but our best estimates lie in the range ≃4-9 x 10^4 M_☉. The CMD of VdB0 is best reproduced by models having solar metallicity and age ≃25 Myr. Ages less than ≃12 Myr and greater than ≃60 Myr are clearly ruled out by the available data. The cluster has a remarkable number of red super giants (≳18) and a CMD very similar to Large Magellanic Cloud clusters usually classified as young globulars such as NGC 1850, for example. Conclusions. VdB0 is significantly brighter (≳1 mag) than Galactic open clusters of similar age. Its present-day mass and half-light radius ((r_h = 7.4 pc) are more typical of faint globular clusters than of open clusters. However, given its position within the disk of M31, it is expected to be destroyed by dynamical effects, in particular by encounters with giant molecular clouds, within the next ~4 Gyr
    corecore