3,290 research outputs found

    Entanglement Cost of Three-Level Antisymmetric States

    Get PDF
    We show that the entanglement cost of the three-dimensional antisymmetric states is one ebit.Comment: 8page

    New BPS Solitons in 2+1 Dimensional Noncommutative CP^1 Model

    Full text link
    Investigating the solitons in the non-commutative CP1CP^{1} model, we have found a new set of BPS solitons which does not have counterparts in the commutative model.Comment: 8 pages, LaTeX2e, references added, improvements to discussions, Version to be published in JHE

    Spin wave dispersion softening in the ferromagnetic Kondo lattice model for manganites

    Full text link
    Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between e_g electrons and antiferromagnetic (AFM) exchange among t_{2g} spins. Our study suggests that competing FM double-exchange and AFM super-exchange interaction lead to a rather nontrivial spin-wave spectrum. While spin excitations have a conventional Dq^2 spectrum in the long-wavelength limit, there is a strong deviation from the spin-wave spectrum of the isotropic Heisenberg model close to the zone boundary. The relevance of our results to the experimental data are discussed.Comment: 6 RevTex pages, 3 embedded PostScript figure

    Non-BPS Solutions of the Noncommutative CP^1 Model in 2+1 Dimensions

    Full text link
    We find non-BPS solutions of the noncommutative CP^1 model in 2+1 dimensions. These solutions correspond to soliton anti-soliton configurations. We show that the one-soliton one-anti-soliton solution is unstable when the distance between the soliton and the anti-soliton is small. We also construct time-dependent solutions and other types of solutions.Comment: 11 pages, minor correction

    A mobile antineutrino detector with plastic scintillators

    Full text link
    We propose a new type segmented antineutrino detector made of plastic scintillators for the nuclear safeguard application. A small prototype was built and tested to measure background events. A satisfactory unmanned field operation of the detector system was demonstrated. Besides, a detailed Monte Carlo simulation code was developed to estimate the antineutrino detection efficiency of the detector.Comment: 23 pages, 11 figures; accepted for publication in Nuclear Instruments and Methods in Physics Research

    Field Emission Dark Current of Technical Metallic Electrodes

    Full text link
    In the framework of the Low Emittance Gun (LEG) project, high gradient acceleration of a low emittance electron beam will be necessary. In order to achieve this acceleration a -500 kV, 250 ns FWHM, pulse will be applied in between two electrodes. Those electrodes should sustain the pulsed field without arcing, must not outgass and must not emit electrons. Ion back bombardment, and dark current will be damageable to the electron source as well as for the low emittance beam. Electrodes of commercially available OFE copper, aluminium, stainless steel, titanium and molybdenum were tested following different procedures including plasma glow discharge cleaning.Comment: 22 pages, 6 tables, 10 figures Vs 2 : graphics more readable, enhanced content Vs 3 : typo correcte

    Solitons of Sigma Model on Noncommutative Space as Solitons of Electron System

    Full text link
    We study the relationship of soliton solutions for electron system with those of the sigma model on the noncommutative space, working directly in the operator formalism. We find that some soliton solutions of the sigma model are also the solitons of the electron system and are classified by the same topological numbers.Comment: 12 pages, LaTeX2e, improvements to discussions, Version to be published in JHE

    Thermocurrents and their Role in high Q Cavity Performance

    Full text link
    Over the past years it became evident that the quality factor of a superconducting cavity is not only determined by its surface preparation procedure, but is also influenced by the way the cavity is cooled down. Moreover, different data sets exists, some of them indicate that a slow cool-down through the critical temperature is favourable while other data states the exact opposite. Even so there where speculations and some models about the role of thermo-currents and flux-pinning, the difference in behaviour remained a mystery. In this paper we will for the first time present a consistent theoretical model which we confirmed by data that describes the role of thermo-currents, driven by temperature gradients and material transitions. We will clearly show how they impact the quality factor of a cavity, discuss our findings, relate it to findings at other labs and develop mitigation strategies which especially addresses the issue of achieving high quality factors of so-called nitrogen doped cavities in horizontal test

    Comments on Noncommutative Sigma Models

    Get PDF
    We review the derivation of a noncommutative version of the nonlinear sigma model on \CPn and it's soliton solutions for finite θ\theta emphasizing the similarities it bears to the GMS scalar field theory. It is also shown that unlike the scalar theory, some care needs to be taken in defining the topological charge of BPS solitons of the theory due to nonvanishing surface terms in the energy functional. Finally it is shown that, like its commutative analogue, the noncommutative \CPn-model also exhibits a non-BPS sector. Unlike the commutative case however, there are some surprises in the noncommutative case that merit further study.Comment: 22 pages, 4 figures, LaTeX (JHEP3), Minor changes, Discussion expanded and references adde
    corecore