7,741 research outputs found

    Periodicities of Quasar Redshifts in Large Area Surveys

    Full text link
    We test the periodicity of quasar redshifts in the 2dF and SDSS surveys. In the overall surveys redshift peaks are already apparent in the brighter quasars. But by analyzing sample areas in detail it is shown that the redshifts fit very closely the long standing Karlssson formula and strongly suggest the existence of preferred values in the distribution of quasar redshifts. We introduce a powerful new test for groups of quasars of differing redshifts which not only demonstrates the periodicity of the redshifts, but also their physical association with a parent galaxy. Further such analyses of the large area surveys should produce more information on the properties of the periodicity.Comment: 23 pages, 14 figure

    Instrument calibrates low gas-rate flowmeters

    Get PDF
    Electronically measuring the transit time of a soap bubble carried by the gas stream between two fixed points in a burette calibrates flowmeters used for measuring low gas-flow rates

    IPAD: A unique approach to government/industry cooperation for technology development and transfer

    Get PDF
    A key element to improved industry productivity is effective management of Computer Aided Design / Computer Aided Manufacturing (CAD/CAM) information. To stimulate advancement, a unique joint government/industry project designated Integrated Programs for Aerospace-Vehicle Design (IPAD) was carried out from 1971 to 1984. The goal was to raise aerospace industry productivity through advancement of computer based technology to integrate and manage information involved in the design and manufacturing process. IPAD research was guided by an Industry Technical Advisory Board (ITAB) composed of over 100 representatives from aerospace and computer companies. The project complemented traditional NASA/DOD research to develop aerospace design technology and the Air Force's Integrated Computer Aided Manufacturing (ICAM) program to advance CAM technology. IPAD had unprecedented industry support and involvement and served as a unique approach to government industry cooperation in the development and transfer of advanced technology. The IPAD project background, approach, accomplishments, industry involvement, technology transfer mechanisms and lessons learned are summarized

    Error analysis and corrections to pupil diameter measurements with Langley Research Center's oculometer

    Get PDF
    Factors that can affect oculometer measurements of pupil diameter are: horizontal (azimuth) and vertical (elevation) viewing angle of the pilot; refraction of the eye and cornea; changes in distance of eye to camera; illumination intensity of light on the eye; and counting sensitivity of scan lines used to measure diameter, and output voltage. To estimate the accuracy of the measurements, an artificial eye was designed and a series of runs performed with the oculometer system. When refraction effects are included, results show that pupil diameter is a parabolic function of the azimuth angle similar to the cosine function predicted by theory: this error can be accounted for by using a correction equation, reducing the error from 6% to 1.5% of the actual diameter. Elevation angle and illumination effects were found to be negligible. The effects of counting sensitivity and output voltage can be calculated directly from system documentation. The overall accuracy of the unmodified system is about 6%. After correcting for the azimuth angle errors, the overall accuracy is approximately 2%

    Integral Grothendieck-Riemann-Roch theorem

    Full text link
    We show that, in characteristic zero, the obvious integral version of the Grothendieck-Riemann-Roch formula obtained by clearing the denominators of the Todd and Chern characters is true (without having to divide the Chow groups by their torsion subgroups). The proof introduces an alternative to Grothendieck's strategy: we use resolution of singularities and the weak factorization theorem for birational maps.Comment: 24 page

    Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions

    Get PDF
    For identical increases in bending moment, a winglet provides a greater gain in induced efficiency than tip extension. Winglet toe angle allows design trades between efficiency and root moment. A winglet shows the greatest benefit when the wing loads are heavy near the tip. Washout diminishes the benefit of either tip modification, and the gain in induced efficiency becomes a function of lift coefficient; thus, heavy wing loadings obtain the greatest benefit from a winglet, and low-speed performance is enhanced even more than cruise performance. Both induced efficiency and bending moment increase with winglet length and outward cant. The benefit of a winglet relative to a tip extension is greatest for a nearly vertical winglet. Root bending moment is proportional to the minimum weight of bending material required in the wing; thus, it is a valid index of the impact of tip modifications on a new wing design
    corecore