1,632 research outputs found

    Monitoring of the MU radar antenna pattern by Satellite Ohzora (EXOS-C)

    Get PDF
    As the first attempt among MST (mesosphere stratosphere troposphere) type radars, the MU (middle and upper atmosphere) radar features an active phased array system. Unlike the conventional large VHF radars, in which output power of a large vacuum tube is distributed to individual antenna elements, each of 475 solid state power amplifier feeds each antenna element. This system configuration enables very fast beam steering as well as various flexible operations by dividing the antenna into independent subarrays, because phase shift and signal division/combination are performed at a low signal level using electronic devices under control of a computer network. The antenna beam can be switched within 10 microsec to any direction within the zenith angle of 30 deg. Since a precise phase alignment of each element is crucial to realize the excellent performance of this system, careful calibration of the output phase of each power amplifier and antenna element was carried out. Among various aircraft which may be used for this purpose artificial satellites have an advantage of being able to make a long term monitoring with the same system. An antenna pattern monitoring system for the MU radar was developed using the scientific satellite OHZORA (EXOS-C). A receiver named MUM (MU radar antenna Monitor) on board the satellite measures a CW signal of 100 to 400 watts transmitted from the MU radar. The principle of the measurement and results are discussed

    A transceiver module of the Mu radar

    Get PDF
    The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna

    Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    Get PDF
    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory

    Wind and waves in the middle atmosphere observed with the MU radar

    Get PDF
    The VHF band MU radar at Shigaraki, Japan, has been in full operation successfully since April 1985. Dynamical features found primarily in the data obtained by the radar during a one year period from December 1985 to November 1986 are examined. These include: basic wind observations, quasi-monochromatic gravity waves generated by the jet stream or through a geostrophic adjustment process, seasonal variation of the mesoscale wind variability, the momentum flux due to gravity wave motions, and saturated gravity wave spectrum. A short discussion is added to the relationship between turbulent layers and ambient wind field in the mesosphere

    Observations of gravity waves in the mesosphere with the MU radar

    Get PDF
    Wind motions were observed at 60 to 90 km altitudes with the MU radar during daylight hours (0800 to 1600 LT) from 13 to 31 October 1986. Quasi-monochromatic gravity waves were evident on 16 of the 19 days of observations. They were characterized by typical vertical wavelength of 5 to 15 km and intrinsic periods centered at about 9 hours. The propagation direction of the gravity waves, determined by the gravity wave dispersion relation, was mostly equatorward. The vertical wave number spectra of the horizontal components of the mesoscale wind fluctuations are explained well by saturated gravity wave theory. The frequency spectrum of vertical wind component has a slope of + 1/3, while the oblique spectra have a slope of -5/3 up to 4 x 10(-3) (c/s); these agree fairly well with model gravity wave spectra. Doppler shift effects on the frequency spectra are recognized at higher frequencies. Upward flux was determined of horizontal momentum flux induced by waves with periods from 10 min to 8 hours, and westward and northward body forces of 5.1 and 4.0 m/s/day, were estimated respectively

    A Cahn–Hilliard system with forward-backward dynamic boundary condition and non-smooth potentials

    Get PDF
    A system with equation and dynamic boundary condition of Cahn–Hilliard type is considered. This system comes from a derivation performed in Liu–Wu (Arch. Ration. Mech. Anal., 233:167–247, 2019) via an energetic variational approach. Actually, the related problem can be seen as a transmission problem for the phase variable in the bulk and the corresponding variable on the boundary. The asymptotic behavior as the coefficient of the surface diffusion acting on the boundary phase variable goes to 0 is investigated. By this analysis we obtain a forward-backward dynamic boundary condition at the limit. We can deal with a general class of potentials having a double-well structure, including the non-smooth double-obstacle potential. We illustrate that the limit problem is well-posed by also proving a continuous dependence estimate. Moreover, in the case when the two graphs, in the bulk and on the boundary, exhibit the same growth, we show that the solution of the limit problem is more regular and we prove an error estimate for a suitable order of the diffusion parameter

    Gravity wave intensity and momentum fluxes in the mesosphere over Shigaraki, Japan (35°N, 136°E) during 1986-1997

    No full text
    International audienceAveraged seasonal variations of wind perturbation intensities and vertical flux of horizontal momentum produced by internal gravity waves (IGWs) with periods 0.2-1 h and 1-6 h are studied at the altitudes 65-80 km using the MU radar measurement data from the middle and upper atmosphere during 1986-1997 at Shigaraki, Japan (35° N, 136° E). IGW intensity has maxima in winter and summer, winter values having substantial interannual variations. Mean wave momentum flux is directed to the west in winter and to the east in summer, opposite to the mean wind in the middle atmosphere. Major IGW momentum fluxes come to the mesosphere over Shigaraki from the Pacific direction in winter and continental Asia in summer

    Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia

    Get PDF
    The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE

    A molecular dynamics simulation of polymer crystallization from oriented amorphous state

    Full text link
    Molecular process of crystallization from an oriented amorphous state was reproduced by molecular dynamics simulation for a realistic polyethylene model. Initial oriented amorphous state was obtained by uniaxial drawing an isotropic glassy state at 100 K. By the temperature jump from 100 K to 330 K, there occurred the crystallization into the fiber structure, during the process of which we observed the developments of various order parameters. The real space image and its Fourier transform revealed that a hexagonally ordered domain was initially formed, and then highly ordered crystalline state with stacked lamellae developed after further adjustment of the relative heights of the chains along their axes.Comment: 4 pages, 3 figure
    • …
    corecore