1,572 research outputs found
Mycorrhizal co-invasion and novel interactions depend on neighborhood context
© 2015 by the Ecological Society of America. Biological invasions are a rapidly increasing driver of global change, yet fundamental gaps remain in our understanding of the factors determining the success or extent of invasions. For example, although most woody plant species depend on belowground mutualists such as mycorrhizal fungi and nitrogen-fixing bacteria, the relative importance of these mutualisms in conferring invasion success is unresolved. Here, we describe how neighborhood context (identity of nearby tree species) affects the formation of belowground ectomycorrhizal partnerships between fungi and seedlings of a widespread invasive tree species, Pseudotsuga menziesii (Douglas-fir), in New Zealand.We found that the formation of mycorrhizal partnerships, the composition of the fungal species involved in these partnerships, and the origin of the fungi (co-invading or native to New Zealand) all depend on neighborhood context. Our data suggest that nearby ectomycorrhizal host trees act as both a reservoir of fungal inoculum and a carbon source for late-successional and native fungi. By facilitating mycorrhization of P. menziesii seedlings, adult trees may alleviate mycorrhizal limitation at the P. menziesii invasion front. These results highlight the importance of studying biological invasions across multiple ecological settings to understand establishment success and invasion speed
Statistical mechanics of ecosystem assembly
We introduce a toy model of ecosystem assembly for which we are able to map
out all assembly pathways generated by external invasions. The model allows to
display the whole phase space in the form of an assembly graph whose nodes are
communities of species and whose directed links are transitions between them
induced by invasions. We characterize the process as a finite Markov chain and
prove that it exhibits a unique set of recurrent states (the endstate of the
process), which is therefore resistant to invasions. This also shows that the
endstate is independent on the assembly history. The model shares all features
with standard assembly models reported in the literature, with the advantage
that all observables can be computed in an exact manner.Comment: Accepted for publication in Physical Review Letter
Verwey transition in FeO at high pressure: quantum critical behavior at the onset of metallization
We provide evidence for the existence of a {\em quantum critical point} at
the metallization of magnetite FeO at an applied pressure of GPa. We show that the present ac magnetic susceptibility data
support earlier resistivity data. The Verwey temperature scales with pressure
, with . The resistivity data shows a
temperature dependence , with above and
2.5 at the critical pressure, respectively. This difference in with
pressure is a sign of critical behavior at . The magnetic susceptibility
is smooth near the critical pressure, both at the Verwey transition and near
the ferroelectric anomaly. A comparison with the critical behavior observed in
the Mott-Hubbard and related systems is made.Comment: 5 pages, 5 figure
The Optical System for the Large Size Telescope of the Cherenkov Telescope Array
The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is
designed to achieve a threshold energy of 20 GeV. The LST optics is composed of
one parabolic primary mirror 23 m in diameter and 28 m focal length. The
reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The
total effective reflective area, taking into account the shadow of the
mechanical structure, is about 368 m. The mirrors have a sandwich structure
consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm
thickness, and another glass sheet on the rear, and have a total weight about
47 kg. The mirror surface is produced using a sputtering deposition technique
to apply a 5-layer coating, and the mirrors reach a reflectivity of 94%
at peak. The mirror facets are actively aligned during operations by an active
mirror control system, using actuators, CMOS cameras and a reference laser.
Each mirror facet carries a CMOS camera, which measures the position of the
light spot of the optical axis reference laser on the target of the telescope
camera. The two actuators and the universal joint of each mirror facet are
respectively fixed to three neighboring joints of the dish space frame, via
specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Layer thickness dependence of the current induced effective field vector in Ta|CoFeB|MgO
The role of current induced effective magnetic field in ultrathin magnetic
heterostructures is increasingly gaining interest since it can provide
efficient ways of manipulating magnetization electrically. Two effects, known
as the Rashba spin orbit field and the spin Hall spin torque, have been
reported to be responsible for the generation of the effective field. However,
quantitative understanding of the effective field, including its direction with
respect to the current flow, is lacking. Here we show vector measurements of
the current induced effective field in Ta|CoFeB|MgO heterostructrures. The
effective field shows significant dependence on the Ta and CoFeB layers'
thickness. In particular, 1 nm thickness variation of the Ta layer can result
in nearly two orders of magnitude difference in the effective field. Moreover,
its sign changes when the Ta layer thickness is reduced, indicating that there
are two competing effects that contribute to the effective field. The relative
size of the effective field vector components, directed transverse and parallel
to the current flow, varies as the Ta thickness is changed. Our results
illustrate the profound characteristics of just a few atomic layer thick metals
and their influence on magnetization dynamics
- …