227 research outputs found

    Muscle Activity Patterns in the Hikiwake Movement of Kyudo

    Get PDF

    Simultaneous Inactivation of the p16, p15, and p14 Genes Encoding Cyclin-Dependent Kinase Inhibitors in Canine T-lymphoid tumor cells

    Get PDF
    The p16, p15, and p14 genes are widely known as tumor suppressor genes in human medicine. Although a large number of genetic and epigenetic aberrations in these genes have been reported in human malignancies, canine malignancies have not been well analyzed on the aberrations of these genes. In this study, the full-length complementary DNA (cDNA) of the canine p16 gene was cloned using the 5′ and 3′ rapid amplification of cDNA ends methods. Based on the sequence data, primers specific for p16, p15, and p14 were designed. Using these primers, the expression of p16, p15, and p14 mRNAs could be individually evaluated by reverse transcriptase polymerase chain reaction. Genomic aberrations were also examined using genomic polymerase chain reaction. Two of the 6 canine lymphoid tumor cell lines did not express detectable levels of p16, p15, and p14 mRNAs, and wide-ranging deletions in the p15-p14-p16 genomic locus were suspected. Wide-ranging deletions were also speculated in 2 of 14 dogs with T-cell lymphoid tumors. On the other hand, similar failure of amplification suggesting wide-ranging deletions were not observed in any of the 14 dogs with B-cell lymphoma. Deletion of the p15-p14-p16 genomic locus could be one of the molecular aberrations in canine lymphoid tumor cells

    The Japanese version of the Generalized Problematic Internet Use Scale 2 (GPIUS2): Psychometric evaluation and analysis of the theoretical model

    Get PDF
    BACKGROUND: The Generalized Problematic Internet Use Scale 2 (GPIUS2) is a self-administered questionnaire that evaluates problematic internet use (PIU) from a multidimensional perspective. We analysed the psychometric properties and adequacy of the theoretical model of Japanese version of the GPIUS2. METHODS: This study included 291 healthy Japanese adults (median age = 25 years; interquartile range 22-43 years; 128 women) who completed the GPIUS2 and several other questionnaires evaluating the degree of PIU, self-esteem, depression, and impulsivity. RESULTS: Exploratory factor analysis (EFA) revealed a similar factor structure between the original and Japanese versions of the GPIUS2, with only minor differences in item composition. Higher-order confirmatory factor analyses revealed a good overall fit for the factorial model suggested by EFA, indicating adequate construct validity. The model showed acceptable internal consistency. Partial correlation analyses between GPIUS2 and other measures, with age as a control variable, revealed good convergent validity. Finally, structural equation modelling showed a good fit to the data, supporting the cognitive-behavioural model of Caplan (2010). CONCLUSIONS: The Japanese version of the GPIUS2 has good psychometric properties and the theoretical model of the original GPIUS2 is applicable to Japanese adults

    Role of Tumor-Associated Macrophages in Sarcomas

    Get PDF
    Simple Summary Recent studies have shown the pro-tumoral role of tumor-associated macrophages (TAMs) not only in major types of carcinomas but also in sarcomas. Several types of TAM-targeted drugs have been investigated under clinical trials, which may represent a novel therapeutic approach for bone and soft-tissue sarcomas. Sarcomas are complex tissues in which sarcoma cells maintain intricate interactions with their tumor microenvironment. Tumor-associated macrophages (TAMs) are a major component of tumor-infiltrating immune cells in the tumor microenvironment and have a dominant role as orchestrators of tumor-related inflammation. TAMs promote tumor growth and metastasis, stimulate angiogenesis, mediate immune suppression, and limit the antitumor activity of conventional chemotherapy and radiotherapy. Evidence suggests that the increased infiltration of TAMs and elevated expression of macrophage-related genes are associated with poor prognoses in most solid tumors, whereas evidence of this in sarcomas is limited. Based on these findings, TAM-targeted therapeutic strategies, such as inhibition of CSF-1/CSF-1R, CCL2/CCR2, and CD47/SIRP alpha, have been developed and are currently being evaluated in clinical trials. While most of the therapeutic challenges that target sarcoma cells have been unsuccessful and the prognosis of sarcomas has plateaued since the 1990s, several clinical trials of these strategies have yielded promising results and warrant further investigation to determine their translational benefit in sarcoma patients. This review summarizes the roles of TAMs in sarcomas and provides a rationale and update of TAM-targeted therapy as a novel treatment approach for sarcomas

    4-(2,5-Dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide improves monoclonal antibody production in a Chinese hamster ovary cell culture

    Get PDF
    There is a continuous demand to improve monoclonal antibody production for medication supply and medical cost reduction. For over 20 years, recombinant Chinese hamster ovary cells have been used as a host in monoclonal antibody production due to robustness, high productivity and ability to produce proteins with ideal glycans. Chemical compounds, such as dimethyl sulfoxide, lithium chloride, and butyric acid, have been shown to improve monoclonal antibody production in mammalian cell cultures. In this study, we aimed to discover new chemical compounds that can improve cell-specific antibody production in recombinant Chinese hamster ovary cells. Out of the 23,227 chemicals screened in this study, 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide was found to increase monoclonal antibody production. The compound suppressed cell growth and increased both cell-specific glucose uptake rate and the amount of intracellular adenosine triphosphate during monoclonal antibody production. In addition, the compound also suppressed the galactosylation on a monoclonal antibody, which is a critical quality attribute of therapeutic monoclonal antibodies. Therefore, the compound might also be used to control the level of the galactosylation for the N-linked glycans. Further, the structure-activity relationship study revealed that 2,5-dimethylpyrrole was the most effective partial structure of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide on monoclonal antibody production. Further structural optimization of 2,5-dimethylpyrrole derivatives could lead to improved production and quality control of monoclonal antibodies

    Clinical relevance and functional significance of cell-free microRNA-1260b expression profiles in infiltrative myxofibrosarcoma

    Get PDF
    Infiltrative tumor growth into adjacent soft tissues is a major cause of the frequent recurrence and tumor-related death of myxofibrosarcoma (MFS), but no useful biomarkers reflecting tumor burden and infiltrative growth are available. While emerging evidence suggests a diagnostic and functional role of extracellular/circulating microRNA (miRNA) in various malignant diseases, their significance in MFS patients remains unknown. Global miRNA profiling identified four upregulated miRNAs in MFS patient sera and culture media of MFS cells. Among these, serum miR-1260b level was significantly upregulated in patient serum discriminating from healthy individuals and closely correlated with clinical status and tumor dynamics in MFS-bearing mice. In addition, high miR-1260b expression in serum was correlated with radiological tail-like patterns, characteristic of the infiltrative MFS. The extracellular miR-1260b was embedded in tumor-derived extracellular vesicles (EVs) and promoted cellular invasion of MFS through the downregulation of PCDH9 in the adjacent normal fibroblasts. Collectively, circulating miR-1260b expression may represent a novel diagnostic target for tumor monitoring of this highly aggressive sarcoma. Moreover, EV-miR-1260b could act as a transfer messenger to adjacent cells and mediate the infiltrative growth of MFS, providing new insights into the mechanism of infiltrative nature via crosstalk between tumor cells and their microenvironment

    Mini-open excision of osteoid osteoma using intraoperative O-arm/Stealth navigation

    Get PDF
    Background Although osteoid osteomas have traditionally been treated by surgical excision, radiofrequency ablation (RFA) has gained favor as a less invasive procedure. However, RFA is contraindicated for osteoid osteomas close to the skin or crucial neurovascular structures, and is not covered by national health insurance in Japan. The aim of the present study was to evaluate the efficacy of surgical excision of osteoid osteomas using intraoperative navigation. Methods We performed a retrospective review of five patients with osteoid osteoma who underwent a mini-open excision using O-arm/Stealth navigation at our institution. The osteoid osteomas were excised using a cannulated cutter or curetted out with the assistance of navigation. Results Complete excision was achieved in all patients, which was confirmed by pathological examination. The mean skin incision was 2.1 cm (range, 1.5 to 3.0 cm) and the mean duration required for setup three-dimensional image was 15 min (range, 12 to 20 min). Although the mean visual analog scale score was 7 (range, 4 to 8) before surgery, all patients experienced relief from their characteristic pain immediately after surgery, with the mean scores of 2.2 (range, 1 to 3) and 0 at 2 days and 4 weeks after surgery, respectively. There was no intra-operative complication related to the navigation and no recurrence was observed during the mean follow-up period of 25 months (range, 13 to 33 months). Conclusions Mini-open excision using intraoperative O-arm/Stealth navigation is a safe and accurate procedure for patients with osteoid osteoma, which could cover the limitation of RFA

    Oncolytic virotherapy promotes radiosensitivity in soft tissue sarcoma by suppressing anti-apoptotic MCL1 expression

    Get PDF
    Soft tissue sarcoma (STS) is a rare cancer that develops from soft tissues in any part of the body. Despite major advances in the treatment of STS, patients are often refractory to conventional radiotherapy, leading to poor prognosis. Enhancement of sensitivity to radiotherapy would therefore improve the clinical outcome of STS patients. We previously revealed that the tumor-specific, replication-competent oncolytic adenovirus OBP-301 kills human sarcoma cells. In this study, we investigated the radiosensitizing effect of OBP-301 in human STS cells. The in vitro antitumor effect of OBP-301 and ionizing radiation in monotherapy or combination therapy was assessed using highly radiosensitive (RD-ES and SK-ES-1) and moderately radiosensitive (HT1080 and NMS-2) STS cell lines. The expression of markers for apoptosis and DNA damage were evaluated in STS cells after treatment. The therapeutic potential of combination therapy was further analyzed using SK-ES-1 and HT1080 cells in subcutaneous xenograft tumor models. The combination of OBP-301 and ionizing radiation showed a synergistic antitumor effect in all human STS cell lines tested, including those that show different radiosensitivity. OBP-301 was found to enhance irradiation-induced apoptosis and DNA damage via suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1), which was expressed at higher levels in moderately radiosensitive cell lines. The combination of OBP-301 and ionizing radiation showed a more profound antitumor effect compared to monotherapy in SK-ES-1 (highly radiosensitive) and HT1080 (moderately radiosensitive) subcutaneous xenograft tumors. OBP-301 is a promising antitumor reagent to improve the therapeutic potential of radiotherapy by increasing radiation-induced apoptosis in STS
    corecore