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Abstract

There is a continuous demand to improve monoclonal antibody production for medication

supply and medical cost reduction. For over 20 years, recombinant Chinese hamster ovary

cells have been used as a host in monoclonal antibody production due to robustness, high

productivity and ability to produce proteins with ideal glycans. Chemical compounds, such

as dimethyl sulfoxide, lithium chloride, and butyric acid, have been shown to improve mono-

clonal antibody production in mammalian cell cultures. In this study, we aimed to discover

new chemical compounds that can improve cell-specific antibody production in recombinant

Chinese hamster ovary cells. Out of the 23,227 chemicals screened in this study, 4-(2,5-

dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide was found to increase

monoclonal antibody production. The compound suppressed cell growth and increased

both cell-specific glucose uptake rate and the amount of intracellular adenosine triphos-

phate during monoclonal antibody production. In addition, the compound also suppressed

the galactosylation on a monoclonal antibody, which is a critical quality attribute of therapeu-

tic monoclonal antibodies. Therefore, the compound might also be used to control the level

of the galactosylation for the N-linked glycans. Further, the structure-activity relationship

study revealed that 2,5-dimethylpyrrole was the most effective partial structure of 4-(2,5-

dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide on monoclonal antibody

production. Further structural optimization of 2,5-dimethylpyrrole derivatives could lead to

improved production and quality control of monoclonal antibodies.

Introduction

The use of therapeutic monoclonal antibodies (mAb) is becoming more common in the treat-

ment of cancer (pembrolizumab, nivolumab, trastuzumab, etc.) and autoimmune diseases
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(adalimumab, infliximab, etc.) [1–7]. Pharmaceutical and biologics companies have strongly

focused on increasing mAb supply and reducing manufacturing costs for commercialization

and sustainable growth. MAb concentrations of several grams per liter, produced by using

recombinant Chinese hamster ovary (rCHO) cells harboring the genes encoding for mAb, has

been achieved in fed-batch cultures through effective host-vector system development [8, 9],

genetically engineered host breeding [10], custom media development [11, 12], and culture

parameter optimization [13, 14].

Efforts have been continued to establish cost-effective manufacturing processes by reducing

the use of expensive materials such as cell culture media and column resins. It is also known

that adding chemical compounds in cell cultures improves mAb production. Various chemical

compounds such as dimethyl sulfoxide (DMSO) [15], lithium chloride [16], butyric acid [17],

valeric acid [18], valproic acid [19], phenolic antioxidants [20], thymidine [21], and CDK4/6

inhibitor [22] have the potential to enhance mAb production when added to the cell culture at

an adequate concentration to control the intracellular state of rCHO cells. In addition,

3-methyladenine up-regulates the unfolded protein response pathway and improves produc-

tion [23], and compound 7312, which works as a caspase inhibitor, suppresses apoptosis and

improves production [24].

To pursue the possibility of the chemical compound approach, potential synthetic com-

pounds that might enhance mAb production in rCHO cells were gathered from the Basis for

Supporting Innovative Drug Discovery and Life Science Research (BINDS) program and eval-

uated by screening in batch cultures. We discovered that 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-

(2,5-dioxopyrrolidin-1-yl) benzamide (MPPB), which was developed as an anti-tuberculosis

therapeutic compound [25–27], stimulated mAb production in cell cultures. To reveal the

characteristics of the compound, we investigated cell culture trends and the metabolism of

rCHO cells under MPPB-supplemented conditions. These studies were executed in both batch

and fed-batch cultures. The results showed that MPPB improved mAb production while

retaining viability and increasing cell-specific productivity by suppressing cell growth and

increasing the cell-specific glucose uptake rate and the amount of intracellular adenosine tri-

phosphate (ATP). MPPB not only improved mAb production, but also affected the N-glycan

profile. The structure-activity relationship of MPPB was evaluated using the compounds corre-

sponding to the partial structures of MPPB as additives in batch cultures and demonstrated

that 2,5-dimethylpyrrole enhanced the cell-specific productivity.

Materials and methods

Cell line and cell culture media

The tested rCHO cells, which expressed the mAb (Immunoglobulin G1), were generated from

CHO-S host cells (Thermo Fisher Scientific, Waltham, MA, USA) by Daiichi Sankyo Co., Ltd.

In-house chemically defined media in which L-alanyl-L-glutamine concentration was adjusted

to 1 mM was used as expansion and basal media. In-house chemically defined feed media was

used in the fed-batch cultures.

Chemical compound library

The chemical compound library was provided by the University of Tokyo, Osaka

University, and Tohoku University, which are members of Basis for Supporting Innovative

Drug Discovery and Life Science Research (BINDS) which is a program that supports drug

discovery.
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Expansion culture condition

The rCHO cells were inoculated at a target viable cell concentration of 0.3 × 106 cells/mL in

125-mL or 250-mL Erlenmeyer flasks (Corning, Corning, NY, USA) with expansion medium.

The working volume was adjusted to 50 mL in the 125-mL flasks and to 100 mL in the 250-mL

flasks. The culture solutions were incubated for 3 to 4 days at 37.0˚C in 5% CO2-enriched air

with the shaker set to 120 rpm (20-mm stroke length).

Screening of the chemical compound library

Initial screening. The rCHO cells were inoculated at a target viable cell concentration of

0.3 × 106 cells/mL in CELLSTAR 96-well suspension culture plates (Greiner Bio-One, Fricken-

hausen, Germany) with expansion medium (198 μL). Rows 1 and 12 on the 96-well plates were

used as controls with DMSO (2 μL). On day 0, 2 μL of each chemical compound dissolved in

DMSO was added to each well. The plates were incubated at 37.0˚C with the shaker set to 120

rpm (20-mm stroke length). After 3 days of culture, mAb concentrations were analyzed with

Octet QKe (ForteBio, Fremont, CA, USA). The resulting mAb concentrations were converted

to arbitrary units according to the following Eq (1).

Arbitrary unit ¼ ðtested mAb concentration � ðaverage mAb concentration of the controls conditions
þ 3 standard deviationsÞÞ ð1Þ

The compounds for which the arbitrary unit showed a positive value were selected as candi-

dates for the secondary screening. The validity of this screening protocol is shown in S1 Table.

Second screening. In the second screening to evaluate the candidates, rCHO cells were

inoculated at a target viable cell concentration of 0.3 × 106 cells/mL in 50-mL suspension cul-

ture flasks (Greiner Bio-One) with basal medium. The working volume was adjusted to 10 mL.

The cell culture solutions were incubated for 3 days in 5% CO2-enriched air at 37.0˚C in static

culture. All tested compounds were dissolved in DMSO at a concentration of 100 mg/mL, and

10 μL (0.1% v/v) of this solution was added to the culture on day 0.

Batch culture condition

In the suspension batch cultures, the rCHO cells were inoculated at a target viable cell concentration

of 0.3 × 106 cells/mL in 50-mL suspension culture flasks (Greiner Bio-One) with basal medium. The

working volume was adjusted to 10 mL. The rCHO cell seeding flasks were incubated for 3 to 10

days in 5% CO2-enriched air at 37.0˚C with the shaker set to 120 rpm (20-mm stroke length).

Fed-batch culture condition

The rCHO cells were inoculated at a target viable cell concentration of 0.3 × 106 cells/mL in

125-mL Erlenmeyer flasks (Corning) with basal medium. The working volume was adjusted to

50 mL. The culture solutions were incubated at 37.0˚C in 5% CO2-enriched air with the shaker

set to 120 rpm (20-mm stroke length) until less than 70% viability was achieved. On days 4, 6,

and 8, feed medium at 2% v/v against the starting volume was added. On day 0, 50 μL (0.1% v/

v) of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2, 5-dioxopyrrolidin-1-yl) benzamide (Abamachem

Ltd., Kyiv, Ukraine) dissolved in DMSO at a concentration of 200 mg/mL was added.

Measurement of viable cell density and viability

Vi-CELL XR (Beckman Coulter, CA, USA) was used to evaluate viable cell density (VCD) and

viability according to the manufacturer’s instructions. All testing samples were diluted twice

except for on days 0 to 4.
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Metabolite analysis

Glucose and lactate concentrations in the cultures were analyzed by BioProfile FLEX2 (Nova

Biomedical, Waltham, MA, USA) according to the manufacturer’s protocol.

Concentration of mAb

Cell culture solution was filtrated with a 0.2-μm filter. The mAb concentration in the residual

solution was measured by high-performance liquid chromatography (HPLC) with a Protein A

affinity chromatography column, which is a PA ImmunoDetection Sensor Cartridge, with an

ID of 2.1 × 30 mm (Applied Biosystems, Bedford, MA, USA).

Measurement of intracellular ATP

An intracellular ATP assay kit (v2, Toyo B-Net, Tokyo, Japan) was used to quantitate ATP

amounts in rCHO cells. Each cell culture solution (100 μL) was diluted with phosphate-buff-

ered saline (1 mL) and then centrifuged (450 g, 5 min), and the supernatant was discarded (1

mL). The resulting cell pellet was suspended in phosphate-buffered saline (1 mL) and then

centrifuged (450 g, 5 min), and the supernatant was again discarded (1 mL). The cell pellet was

suspended in the ATP extraction reagent from the kit (0.5 mL) and incubated for 5 minutes to

extract ATP from the cells. The suspension (10 μL) was mixed with luciferase luminescence

assay reagents (100 μL), and measurements were obtained by using the Infinite M Plex plate

reader (Tecan, Mannedorf, Switzerland). The resulting ATP concentration was converted to

the amount of intracellular ATP per cell.

Calculation of cell-specific productivity, cell-specific glucose uptake rates,

and cell-specific lactate production rates

Cell-specific productivity (pg/cell/day), cell-specific glucose uptake rates (pmol/cell/day), and

cell-specific lactate production rates (pmol/cell/day) were calculated as the slopes of mAb con-

centration (mg/L), consumed glucose concentration (mM), and lactate concentration (mM),

respectively, to integral viable cell concentration ((cells�day)/mL), according to previous

reports [28, 29].

N-linked glycan analysis

The samples purified with the spin column-based antibody purification kit (Cosmo Bio,

Tokyo, Japan) according to the manufacturer’s protocol were labeled with 2-AB using the

EZGlyco mAb-N kit (Sumitomo Bakelite, Tokyo, Japan) for N-linked glycan analysis, which

was performed under gradient conditions of 50 mM ammonium formate buffer (pH 4.4) on

HPLC using a XBridge BEH Amide XP Column (2.5 μm, ID 4.6 × 150 mm, Waters Corpora-

tion, Milford, MA, USA) at 60˚C. The detected wavelength was 420 nm, and the flow rate was

changed from 0.4 to 1.0 mL/min under gradient conditions.

Statistical analysis

At least 3 batches were executed for statistical analysis. The mean ± standard deviation (SD)

and P-value were calculated using JMP statistical analysis software (SAS, NC, USA). Differ-

ences in the data were considered significant at P< 0.05.
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Results

Initial screening of the chemical compound library

A total of 23,227 chemical compounds were evaluated by cultivation in 96-well plates as an ini-

tial screening process (Fig 1). In the rCHO cell cultures, 566 compounds showed a positive

effect in terms of increased mAb production. The hit rate was 2.5%. In parallel, we investigated

the commercial availability of the first screening positives before starting the second screening

to obtain sufficient amounts of the positives for further study. Although 67 chemical com-

pounds were commercially available, another 5 compounds for which the original structures

were not commercially available were also tested as derivatives. Therefore, a total of 72 samples

underwent the second screening culture.

Second screening of the selected compounds

Seventy-two chemical compounds were further evaluated. The relative cell-specific productiv-

ity, relative mAb concentration, and viability were assessed to evaluate the chemical com-

pound treatments against the control condition. The selection criteria of the candidate

compounds were set to over 120% for relative mAb concentration, 105% for relative cell-spe-

cific productivity, and 80% for viability. The samples with the ID numbers 42, 62, and 67 met

Fig 1. Results of the first screening to evaluate the effect of the chemical compounds on mAb production. Higher mAb production is shown as a positive arbitrary

unit.

https://doi.org/10.1371/journal.pone.0250416.g001
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these criteria, with increases of 125 to 158% for mAb concentration and 108 to 392% for cell-

specific productivity in comparison with the control condition (Fig 2).

MPPB as an effective additive of mAb production. The samples with the ID numbers

42, 62, and 67 were re-evaluated to confirm the reproducibility of second screening results.

The three selected compounds had higher relative mAb concentration and relative cell-specific

productivity. ID number 62 showed an especially strong effect, with a 171% increase in relative

mAb concentration and a 202% increase in relative cell-specific productivity compared with

the control condition (Fig 3). As ID number 62 demonstrated the largest effect, we further

investigated the characteristics of ID number 62 in batch and fed-batch cultures. The selected

compound was MPPB (Fig 4), a commercially available substitute for a first-screening-hit-

compound supplied from the chemical compound library of the University of Tokyo. MPPB

was originally developed as an anti-tuberculosis therapeutic compound [25–27].

Fig 2. Relative mAb concentration and cell-specific productivity increased with the addition of the chemical

compounds. The numbers in and above the circles indicate viability and the sample’s ID number, respectively.

https://doi.org/10.1371/journal.pone.0250416.g002

Fig 3. The effect of the three candidate compounds on relative mAb concentration and relative cell-specific productivity. All cell

cultures were executed three times and evaluated on day 3. Each value of relative mAb production (A) and relative cell-specific

productivity (B) were compared statistically.

https://doi.org/10.1371/journal.pone.0250416.g003
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Effect of MPPB on the culture profile in the batch cultures

The effect of MPPB on the culture profile was tested in the batch cultures, as shown in Fig 5.

MPPB suppressed cell growth depending on the concentration of MPPB added (Fig 5A). Via-

bility was slightly decreased at a MPPB concentration of 1.28 mM (Fig 5B) and cell-specific

productivity was increased by an addition of MPPB with a concentration over 0.32 mM (Fig

5C). A dose-dependent reduction in day 4 mAb concentration was observed with increasing

concentrations of MPPB due to suppressed cell growth in these short-period batch cultures

(Fig 5D). These results showed that treatment with MPPB concentrations of 0.32 to 0.64 mM

suppressed cell growth and increased cell-specific productivity while retaining viability. There-

fore, MPPB concentrations of 0.32 to 0.64 mM were used to characterize MPPB.

Becker et al. [30] and Hara and Kondo [31] reported that increased amounts of intracellular

ATP are associated with increased cell-specific productivity. Therefore, we investigated intra-

cellular ATP amounts and cell-specific glucose uptake rates, which are related to ATP produc-

tion [32, 33], in the batch cultures to clarify the reason for the increasing cell-specific

productivity (Fig 6). The results showed that both intracellular ATP amounts and cell-specific

glucose uptake rates were increased with higher MPPB concentrations. Intracellular ATP

Fig 4. The structure of 4-(2,5-dimethyl-1H-pyrrol-1-yl)-N-(2,5-dioxopyrrolidin-1-yl) benzamide (MPPB).

https://doi.org/10.1371/journal.pone.0250416.g004
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amounts increased from 8 to 24 fmol/cell (Fig 6A), and cell-specific glucose uptake rates

increased from 0.9 to 2.6 pmol/cell/day (Fig 6B). Intracellular ATP amounts and cell-specific

glucose uptake rates were positively correlated with cell-specific productivity (Fig 6C). Addi-

tionally, cell growth was suppressed with MPPB treatment (Fig 6D)

MPPB was further evaluated in the batch cultures. These cell cultures were continued until

less than 70% viability was reached. Culture conditions including pH, glucose concentration,

and aeration were not optimized in any cell culture at this time in order to evaluate the effect

of MPPB only. The maximum VCD was reduced from 16.6 × 106 cells/mL to 8.0 × 106 cells/

mL with MPPB treatment (Fig 7A). On the other hand, the MPPB-added condition retained

higher viability (Fig 7B). The mAb concentration under the MPPB-added condition was

almost the same value as the control condition at each harvest time point (Fig 7C). The MPPB

addition increased the cell-specific productivity from 4.2 pg/cell/day to 7.9 pg/cell/day (Fig

7D).

From a spent media analysis, glucose and lactate concentrations showed no differences

between the conditions with and without the addition of MPPB (Fig 8A and 8B). However,

cell-specific glucose uptake rate increased from 0.49 to 1.1 pmol/cell/day with MPPB treatment

(Fig 8C). Meanwhile, the cell-specific lactate production rate increased from 0.22 to 0.37

pmol/cell/day under the MPPB-added condition (Fig 8D). The increase in the cell-specific

Fig 5. MPPB suppresses cell growth and increases cell-specific productivity. The tested MPPB concentrations are indicated in the figure. In these tests, viable cell

density (A), viability (B), cell-specific productivity on day 4 (C), mAb concentration on day 4 (D) were evaluated.

https://doi.org/10.1371/journal.pone.0250416.g005
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lactate production rate was 0.15 pmol/cell/day, which was smaller than the increase in the cell-

specific glucose uptake rate (0.61 pmol/cell/day). This result suggests that consumed glucose

was more efficiently converted to ATP via the tricarboxylic acid (TCA) cycle in the MPPB-

added condition.

Effect of MPPB on the culture profile in the fed-batch cultures

Further evaluation of the MPPB-added condition was continued in the fed-batch cultures.

These cell cultures were continued until less than 70% viability was reached. Culture condi-

tions (pH, glucose concentration, and aeration) were not optimized in any cell culture at this

time in order to evaluate the effect of MPPB only. The maximum VCD under the MPPB-

added condition was reduced from 21.2 × 106 cells/mL in the control condition to 14.0 × 106

cells/mL (Fig 9A). The VCD and viability also decreased after day 8 in the control condition

(Fig 9A and 9B). However, they were maintained until day 12 under the MPPB-added condi-

tion. Despite the lower VCD, the final mAb concentration under the MPPB-added condition

reached 1,098 mg/L which was 1.5-folds higher than that under the control condition (Fig 9C).

The cell-specific productivity under the MPPB-added condition was also 1.5-fold higher than

that under the control condition (Fig 9D). The cell-specific productivity under the control and

MPPB-added conditions was 7.1 and 11 pg/cell/day, respectively.

Fig 6. MPPB increased both intracellular ATP amounts and cell-specific glucose uptake rates and suppressed cell growth. Given previous results, the tested MPPB

concentrations ranged from 0.32 to 0.64 mM. Intracellular ATP amounts (A), cell-specific glucose uptake rates (B), relative cell-specific productivity (C), and viable cell

density (D) were evaluated on day 3.

https://doi.org/10.1371/journal.pone.0250416.g006
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Residual glucose was fully consumed by day 10 under the control condition, while glucose

under the MPPB-added condition was retained until day 14 (Fig 10A). The cell-specific glu-

cose uptake rates were 0.63 and 0.74 pmol/cell/day under the control and MPPB-added condi-

tions, respectively (Fig 10C). The lactate concentration was kept under 0.8 g/L, and the cell-

specific lactate production rates were similar in both conditions (Fig 10B and 10D).

In addition, the major N-linked glycans (G0F, G1F, G2F, and M5) of mAb were investi-

gated on each final culture day (MPPB (+): day 14, MPPB (-): day 10). G0F was the major N-

linked glycan, and G1F was decreased from 24.5 to 14.8% under the MPPB-added condition,

although G2F and M5 ratios were not changed, as shown in Fig 11.

Structure-activity relationship of MPPB

The MPPB structure is divided into five chemical components, as follows: N-(2,5-dioxopyrro-

lidin-1-yl) benzamide; 4-(2,5-dimethyl-1H-pyrrol-1-yl) benzamide; succinimide; 4-aminoben-

zamide; and 2,5-dimethylpyrrole (Fig 12).

The activity of the five chemical components derived from MPPB was identified and com-

pared with that of MPPB in terms of cell-specific productivity in the batch cultures (Fig 13). 4-

(2,5-Dimethyl-1H-pyrrol-1-yl) benzamide and 2,5-dimethylpyrrole increased cell-specific pro-

ductivity. Further, the 2,5-dimethylpyrrole-added condition had a 2.2-fold higher cell-specific

Fig 7. Cell culture profile and mAb production in rCHO cells treated with MPPB. MPPB at 0.64 mM was added in the batch cultures on day 0. Viable cell density (A)

and viability (B) were measured every 2 days. Cell culture was continued until viability below 70% was reached. The slope of mAb concentration (C) to integral viable cell

concentration was used to indicate cell-specific productivity (D) [28].

https://doi.org/10.1371/journal.pone.0250416.g007
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productivity than the control condition. These results suggested that 2,5-dimethylpyrrole was

the most active chemical structure of MPPB.

Further evaluation was conducted to identify the effect of pyrrole derivatives on viability

and cell-specific productivity in the batch cultures (Fig 14, Table 1). Cell-specific productivity

with alkyl pyrrole derivatives (2, 9–14) was increased up to 1.4- to 7.8-fold higher than that

with the control condition, although pyrrole (7) and 1-alkyl pyrroles (1, 8) did not show any

activity. On the other hand, viability decreased below 50% with these alkyl pyrrole derivatives

(2, 9–14), except for 2,5-dimethylpyrrole (13). 2,5-Dimethylpyrrolidine (6), which has a

reduced framework of 2,5-dimethylpyrrole (13), also did not affect the cell culture. In addition,

the alkyl pyrroles (9–14) that showed high cell-specific productivity in the 0.32 mM concentra-

tion were also tested in other MPPB concentrations (S2 Fig). The results showed that

2,5-dimethylpyrrole (13) effectively increased cell-specific productivity without decreasing via-

bility. Thus, 2,5-dimethylpyrrole (13) was found to be the most effective chemical structure to

increase cell-specific productivity while retaining viability.

Discussion

In this study, we screened chemical compounds to find novel additives that improve mAb pro-

duction in rCHO cells and thereby promote pharmaceutical supply (Figs 1–3). MPPB had

Fig 8. The effect of MPPB on the metabolite profile in the batch cultures. The spent media analysis of glucose concentration (A) and lactate concentration (B) was

conducted every 2 days starting on day 2. Cell-specific glucose uptake rates (C) and cell-specific lactate production rates (D) were indicated as the slopes of consumed

glucose concentration and lactate concentration, respectively to integral viable cell concentration [28, 29].

https://doi.org/10.1371/journal.pone.0250416.g008

PLOS ONE A 2,5-dimethylpyrrol derivative improves monoclonal antibody productivity in rCHO cell culture

PLOS ONE | https://doi.org/10.1371/journal.pone.0250416 April 22, 2021 11 / 20

https://doi.org/10.1371/journal.pone.0250416.g008
https://doi.org/10.1371/journal.pone.0250416


1.5-fold higher mAb production than the control conditions in the fed-batch cultures. This

is the first study in which MPPB was applied in rCHO cell cultures to improve mAb

production.

Our study revealed two key factors for the improvement of mAb production by MPPB:

retaining high viability (Figs 7B and 9B), and increasing of cell-specific productivity (Figs 7D

and 9D). It is likely that these two factors explain the increased mAb production in the MPPB-

added condition despite lower cell concentrations compared to the control condition.

The mechanism of MPPB in terms of retaining viability is unclear. MPPB might keep glu-

cose concentrations high, leading to retained viability (Figs 9B and 10A). However, although

the remaining glucose concentration was almost similar with and without the addition of

MPPB in the batch cultures, the viability remained high under the MPPB-added condition

(Figs 7B and 8A). Once, glucose was maintained above 1 g/L in the fed-batch cultures (S1 Fig),

the viability under the control condition was 45% lower than that under the MPPB-added con-

dition on day 12. These results suggested that cell growth suppression by MPPB treatment pre-

vented the depletion of medium components except for glucose, resulting in maintained

viability.

The cause of increased cell-specific productivity, however, is clearer. In our study, MPPB

treatment had two important effects to increase cell-specific productivity. One was the

Fig 9. Cell culture profile and mAb production in the fed-batch cultures under the MPPB-added condition. MPPB at 0.64 mM was added to a culture on day 0, and

2% (v/v) feed medium was added on days 2, 4, and 6. Viable cell density (A) and viability (B) were measured every 2 days. The cell culture was continued until viability

below 70% was reached. The slope of the mAb concentration (C) and integral viable cell concentration were used as cell-specific productivity (D) [28].

https://doi.org/10.1371/journal.pone.0250416.g009
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suppression of cell growth (Figs 5A, 6D, 7A and 9A), and the other was the acceleration of cell-

specific glucose uptake rates (Figs 6B, 8C and 10C), while keeping cell-specific lactate produc-

tion rates low (Figs 8D and 10D). Both the effects would control the amounts of intracellular

ATP. As reported by Mulukutla et al. [34], growing cells require more ATP than quiescent

cells. Templeton et al. [35] reported that the stationary phase, which is a suppressed state of

cell growth, activates the TCA cycle. An increased cell-specific glucose uptake rate leads to an

increased amounts of intracellular ATP when glucose is metabolized to ATP in the TCA cycle

[32, 33], but not when glucose is metabolized to lactate. Becker et al. [30] and Hara and Kondo

[31] reported that the energy available in the form of intracellular ATP is crucial for mAb pro-

duction. Accordingly, it may be hypothesized that rCHO cells increased intracellular ATP

amounts by suppressing cell growth and increasing cell-specific glucose uptake rates in MPPB-

supplemented condition, thereby increasing cell-specific productivity, as expected. To test this

hypothesis, we investigated the relationship between the amount of intracellular ATP and

MPPB concentration (Fig 6). We found that the amount of intracellular ATP was enhanced

with higher MPPB concentrations (Fig 6A). Cell-specific glucose uptake rates and cell-specific

productivity were also increased (Fig 6B and 6C). On the other hand, cell growth was also

Fig 10. Metabolite analysis of the fed-batch cultures under the MPPB-added condition. Glucose concentration (A) and lactate concentration (B) were measured before

adding the feed medium. Glucose concentration after adding the feed medium was calculated using the added feed medium amount. Cell-specific glucose uptake rates (C)

and cell-specific lactate production rates (D) were indicated as the slopes of consumed glucose concentration and lactate concentration, respectively, against integral viable

cell concentration [28, 29].

https://doi.org/10.1371/journal.pone.0250416.g010
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suppressed with higher MPPB concentrations (Fig 6D). Therefore, we predicted that the

increased cell-specific productivity under the MPPB-added condition might occur due to the

increasing amount of intracellular ATP resulting from cell growth suppression and enhanced

cell-specific glucose uptake rates. Our results showed that a chemical compound such as

MPPB, which suppresses cell growth and increases intracellular ATP amounts, may improve

mAb production in rCHO cell cultures.

Furthermore, we found that MPPB treatment suppressed galactosylation in N-linked gly-

cans on the expressed mAb (Fig 11). The galactosylation ratio in N-linked glycans on mAb is

Fig 11. MPPB suppresses galactosylation of mAb. Each value was calculated as the percentage of total N-linked

glycans. The ratio was statically analyzed.

https://doi.org/10.1371/journal.pone.0250416.g011

Fig 12. Five chemical components derived from MPPB.

https://doi.org/10.1371/journal.pone.0250416.g012
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one of the critical quality attributes of mAb in terms of pharmaceutical development, because

the galactosylation profile affects complement-dependent cytotoxicity [36, 37] and antibody-

dependent cellular cytotoxicity [38–40]. Therefore, to adjust mAb activity and maintain con-

sistent quality, galactosylation is often controlled during pharmaceutical process research and

development. Some media additives are known to affect the galactosylation of mAb in rCHO

cells. For example, valeric acid, valproic acid, CDK4/6 inhibitor, galactose, manganese, and

uridine encourage galactosylation [18, 19, 22, 41, 42], while zinc and ammonia suppress galac-

tosylation [43, 44]. However, ammonia is harmful to rCHO cells [45]. The number of effective

galactsylation suppressants is small, and, therefore, the suppression of galactosylation by

media additives is not well understood. Our findings that MPPB suppressed the galactosylation

may offer a new option to control the quality of mAb by the suppression of galactosylation in

the N-linked glycans of mAb.

Finally, the structure-activity relationship study revealed that the most critical chemical

portion of MPPB to maintain the viability and improve the cell-specific productivity of mAb

in rCHO cells was 2,5-dimethylpyrrole (Figs 13 and 14, Table 1). Since 2,5-dimethylpyrroli-

dine having a reduced framework of 2,5-dimethylpyrrole showed no effect, the importance

of the heteroaromatic framework of 2,5-dimethylpyrrole for both the activities was sug-

gested. The 2,5-dialkyl substitution of pyrrole was also indispensable. The viability was

decreased in the cases of other mono- or bis-alkyl-substituted pyrroles. Furthermore, non-

alkylated or N-substituted pyrroles showed no effect on both the viability and the cell-spe-

cific productivity. Thus, the 2,5-dialkyl-substituted pyrrole framework was found to be effec-

tive on maintaining viability and improving cell-specific productivity of mAb in rCHO cells

during the structure-activity relationship study. The mechanism of the action of MPPB and

2,5-dimethylpyrrole in rCHO cell cultures is currently being considered for future applica-

tion studies.

Fig 13. Evaluation of the effect of the five chemical components derived from MPPB on cell-specific productivity.

Each chemical compound was added on day 0 and evaluated on day 3. The tested concentration of each chemical

compound was 0.32 mM. Lane 1: dimethyl sulfoxide (control); lane 2: MPPB; lane 3: N-(2,5-dioxopyrrolidin-1-yl)

benzamide; lane 4: 4-(2,5-dimethyl-1H-pyrrol-1-yl) benzamide; lane 5: succinimide; lane 6: 4-aminobenzamide; lane 7:

2,5-dimethylpyrrole.

https://doi.org/10.1371/journal.pone.0250416.g013
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Fig 14. Additional pyrrole derivatives tested to identify the structure-activity relationship of MPPB with viability and relative

cell-specific productivity in rCHO cell cultures.

https://doi.org/10.1371/journal.pone.0250416.g014

Table 1. Effect of pyrrole derivatives on viability and relative cell-specific productivity in rCHO cell cultures.

Compound No. Compound name Viability (%) Relative cell-specific productivity

- Dimethyl sulfoxide (control) 99.4 (0.4) 1.0 (0.0)

- MPPB 99.2 (0.5) 1.4 (0.2)

1 1-(2-Hydroxyethyl)pyrrole 99.6 (0.2) 1.0 (0.1)

2 2-Ethylpyrrole 41.2 (2.5) 1.4 (0.1)

3 Pyrrole-2-carboxaldehyde 99.3 (0.2) 1.0 (0.1)

4 Pyrrole-2-carboxylic acid 99.5 (0.2) 1.0 (0.1)

5 Pyrrolidine 98.9 (1.4) 1.0 (0.0)

6 2,5-Dimethylpyrrolidine 99.0 (1.0) 1.0 (0.0)

7 Pyrrole 99.3 (0.7) 1.0 (0.1)

(Continued)
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Supporting information

S1 Fig. The fed-batch culture profile in the retained glucose condition. Glucose was added

on days 8 and 12 to keep the concentration above 1 g/L in the fed-batch cultures. And Feed

medium was added on days 4, 6, and 8. Viable cell density (A), viability (B), glucose concentra-

tion (C), lactate concentration (D), and mAb concentration (E) were measured every 2 days.

The each slope of mAb concentration, consumed glucose concentration and lactate concentra-

tion to integral viable cell concentration were used to indicate cell-specific productivity (F),

cell-specific glucose uptake rates (G), and cell-specific lactate production rates (H), respec-

tively [28].
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S2 Fig. The trend of viability and cell-specific productivity in each pyrrole derivatives con-

centration. Viability (A) and cell-specific productivity (B) were analyzed by sampling day 3

cells in the batch cultures. The tested pyrrole derivative concentrations were 0.08 to 0.64 mM

in the culture solutions. Culture conditions were considered adequate when viability was

above 80%.

(DOCX)

S1 Table. The validity of the first screening condition. DMSO was used as the 0% control,

and 4-phenyl butyric acid dissolved in DMSO was used as the 100% control. Validity was eval-

uated at the points of coefficient of variation (CV) using day 3 cell culture solution.
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