50 research outputs found

    Abscopal Effect and Drug-Induced Xenogenization: A Strategic Alliance in Cancer Treatment?

    Get PDF
    The current state of cancer treatment is still far from being satisfactory considering the strong impairment of patients’ quality of life and the high lethality of malignant diseases. Therefore, it is critical for innovative approaches to be tested in the near future. In view of the crucial role that is played by tumor immunity, the present review provides essential information on the immune-mediated effects potentially generated by the interplay between ionizing radiation and cytotoxic antitumor agents when interacting with target malignant cells. Therefore, the radiation-dependent abscopal effect (i.e., a biological effect of ionizing radiation that occurs outside the irradiated field), the influence of cancer chemotherapy on the antigenic pattern of target neoplastic cells, and the immunogenic cell death (ICD) caused by anticancer agents are the main topics of this presentation. It is widely accepted that tumor immunity plays a fundamental role in generating an abscopal effect and that anticancer drugs can profoundly influence not only the host immune responses, but also the immunogenic pattern of malignant cells. Remarkably, several anticancer drugs impact both the abscopal effect and ICD. In addition, certain classes of anticancer agents are able to amplify already expressed tumor-associated antigens (TAA). More importantly, other drugs, especially triazenes, induce the appearance of new tumor neoantigens (TNA), a phenomenon that we termed drug-induced xenogenization (DIX). The adoption of the abscopal effect is proposed as a potential therapeutic modality when properly applied concomitantly with drug-induced increase in tumor cell immunogenicity and ICD. Although little to no preclinical or clinical studies are presently available on this subject, we discuss this issue in terms of potential mechanisms and therapeutic benefits. Upcoming investigations are aimed at evaluating how chemical anticancer drugs, radiation, and immunotherapies are interacting and cooperate in evoking the abscopal effect, tumor xenogenization and ICD, paving the way for new and possibly successful approaches in cancer therapy

    Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells

    Get PDF
    Glioblastoma (GBM) is the most frequent and aggressive type of brain tumor. There are limited therapeutic options for GBM so that new and effective agents are urgently needed. Euphol is a tetracyclic triterpene alcohol, and it is the main constituent of the sap of the medicinal plant Euphorbia tirucalli. We previously identified anti-cancer activity in euphol based on the cytotoxicity screening of 73 human cancer cells. We now expand the toxicological screening of the inhibitory effect and bioactivity of euphol using two additional glioma primary cultures. Euphol exposure showed similar cytotoxicity against primary glioma cultures compared to commercial glioma cells. Euphol has concentration-dependent cytotoxic effects on cancer cell lines, with more than a five-fold difference in the IC50 values in some cell lines. Euphol treatment had a higher selective cytotoxicity index (0.64-3.36) than temozolomide (0.11-1.13) and reduced both proliferation and cell motility. However, no effect was found on cell cycle distribution, invasion and colony formation. Importantly, the expression of the autophagy-associated protein LC3-II and acidic vesicular organelle formation were markedly increased, with Bafilomycin A1 potentiating cytotoxicity. Finally, euphol also exhibited antitumoral and antiangiogenic activity in vivo, using the chicken chorioallantoic membrane assay, with synergistic temozolomide interactions in most cell lines. In conclusion, euphol exerted in vitro and in vivo cytotoxicity against glioma cells, through several cancer pathways, including the activation of autophagy-associated cell death. These findings provide experimental support for further development of euphol as a novel therapeutic agent for GBM, either alone or in combination chemotherapy.The work was supported by the Amazonia Fitomedicamentos (FITO05/2012) Ltda. and Barretos Cancer Hospital, all from Brazil

    Autophagy Interplay with Apoptosis and Cell Cycle Regulation in the Growth Inhibiting Effect of Resveratrol in Glioma Cells

    Get PDF
    Prognosis of patients with glioblastoma (GBM) remains very poor, thus making the development of new drugs urgent. Resveratrol (Rsv) is a natural compound that has several beneficial effects such as neuroprotection and cytotoxicity for several GBM cell lines. Here we evaluated the mechanism of action of Rsv on human GBM cell lines, focusing on the role of autophagy and its crosstalk with apoptosis and cell cycle control. We further evaluated the role of autophagy and the effect of Rsv on GBM Cancer Stem Cells (gCSCs), involved in GBM resistance and recurrence. Glioma cells treated with Rsv was tested for autophagy, apoptosis, necrosis, cell cycle and phosphorylation or expression levels of key players of these processes. Rsv induced the formation of autophagosomes in three human GBM cell lines, accompanied by an upregulation of autophagy proteins Atg5, beclin-1 and LC3-II. Inhibition of Rsv-induced autophagy triggered apoptosis, with an increase in Bax and cleavage of caspase-3. While inhibition of apoptosis or autophagy alone did not revert Rsv-induced toxicity, inhibition of both processes blocked this toxicity. Rsv also induced a S-G2/M phase arrest, accompanied by an increase on levels of pCdc2(Y15), cyclin A, E and B, and pRb (S807/811) and a decrease of cyclin D1. Interestingly, this arrest was dependent on the induction of autophagy, since inhibition of Rsv-induced autophagy abolishes cell cycle arrest and returns the phosphorylation of Cdc2(Y15) and Rb(S807/811), and levels of cyclin A, and B to control levels. Finally, inhibition of autophagy or treatment with Rsv decreased the sphere formation and the percentage of CD133 and OCT4-positive cells, markers of gCSCs. In conclusion, the crosstalk among autophagy, cell cycle and apoptosis, together with the biology of gCSCs, has to be considered in tailoring pharmacological interventions aimed to reduce glioma growth using compounds with multiple targets such as Rsv

    INCREASE OF NATURAL KILLER ACTIVITY OF MOUSE LYMPHOCYTES FOLLOWING IN VITRO AND IN VIVO TREATMENT WITH LITHIUM.

    No full text
    The in vivo and in vitro influence of lithium lactate on mouse natural killer activity was investigated. In vitro exposure of effector-target mixture to graded concentrations of lithium did not substantially modify the natural killer activity of mouse splenocytes, untreated or pretreated with cyclophosphamide. However in vitro treatment of effector splenocytes increased the frequency of NK-percursor cells. The in vivo treatment with lithium lactate greatly increased the natural killer activity in intact mice, whereas it did not improve this cytotoxic function in host immunodepressed by cyclophosphamide. These data suggest that lithium salts produce a modulation of natural killer activity of mouse spleen cells, probably through a mechanism involving the increase of the number of NK-precursors in hosts not subjected to cytotoxic chemotherapy

    Interferon-beta combined with interleukin-2 restores human natural cytotoxicity impaired in vitro by ionizing radiations

    No full text
    It is well known that ionizing radiations induce a marked downregulation of antigen-dependent and natural immunity for a prolonged period of time. This is due, at least in part, to radiation-induced apoptosis of different lymphocyte subpopulations, including natural killer (NK) cells. Aim of this study was to investigate the capability of Beta Interferon (β-IFN) and Interleukin-2 (IL2), alone or in combination, to restore the functional activity of the natural immune system. Mononuclear cells (MNCs) obtained from intact or in vitro irradiated human peripheral blood were treated in vitro with β-IFN immediately before or at the end of the 4-day treatment with IL2. Time-course analysis was performed on the NK activity, the total number and the apoptotic fraction of CD16+ and CD56+ cells, the 2 main NK effector cell subpopulations. The results indicate that radiation-induced impairment of natural cytotoxicity of MNC could be successfully antagonized by the β-IFN+IL2 combination, mainly when exposure to β-IFN preceded IL2 treatment. This radioprotective effect is paralleled by lower levels of radiation-induced apoptosis and increased expression of the antiapoptotic Bcl-2 protein. Since natural immunity can play a significant role in antitumor host's resistance, these results could provide the rational basis for a cytokine-based pharmacological strategy able to restore immune responsiveness and to afford possible therapeutic benefits in cancer patients undergoing radiotherapy
    corecore