5,549 research outputs found

    Cellular Programming of Plant Gene Imprinting

    Get PDF
    Gene imprinting, the differential expression of maternal and paternal alleles, independently evolved in mammals and in flowering plants. A unique feature of flowering plants is a double-fertilization event in which the sperm fertilize not only the egg, which forms the embryo, but also the central cell, which develops into the endosperm (an embryo-supporting tissue). The distinctive mechanisms of gene imprinting in the endosperm, which involve DNA demethylation and histone methylation, begin in the central cell and sperm prior to fertilization. Flowering plants might have coevolved double fertilization and imprinting to prevent parthenogenetic development of the endosperm

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Methyl (2′S,3′S)-3,4-O-(2′,3′-dimethoxy­butane-2′,3′-di­yl)-α-l-rhamnopyran­oside: a glycosyl acceptor

    Get PDF
    The title compound, C13H24O7, is the product of the ketalization of methyl l-(+)-rhamnopyran­oside with 2,3-butane­dione. It crystallizes with two mol­ecules in the asymmetric unit, which are connected by O—H⋯O hydrogen bonds. The C-3,4 diequatorial hydroxy groups of the methyl l-(+)-rhamnopyran­oside were protected, leaving the C-2 hydroxy group free. The l-(+)-rhamnopyran­oside and 2′,3′-dimethoxy­butane-2′,3′-diyl rings adopt chair conformations and all meth­oxy groups are in axial positions. The absolute configuration was assumed from the synthesis

    Wavefunction topology of two-dimensional time-reversal symmetric superconductors

    Full text link
    We discuss the topology of the wavefunctions of two-dimensional time-reversal symmetric superconductors. We consider (a) the planar state, (b) a system with broken up-down reflection symmetry, and (c) a system with general spin-orbit interaction. We show explicitly how the relative sign of the order parameter on the two Fermi surfaces affects this topology, and clarify the meaning of the Z2Z_2 classification for these topological states.Comment: only the Introduction has been modified from v

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    High‐Voltage Aqueous Mg‐Ion Batteries Enabled by Solvation Structure Reorganization

    Get PDF
    Herein, an eco-friendly and high safety aqueous Mg-ion electrolyte (AME) with a wide electrochemical stability window (ESW) 3.7 V, containing polyethylene glycol (PEG) and low-concentration salt (0.8 m Mg(TFSI)2_2), is proposed by solvation structure reorganization of AME. The PEG agent significantly alters the Mg2+^{2+} solvation and hydrogen bonds network of AMEs and forms the direct coordination of Mg2+^{2+} and TFSI-, thus enhancing the physicochemical and electrochemical properties of electrolytes. As an exemplary material, V2_2O5_5 nanowires are tested in this new AME and exhibit initial high discharge/charge capacity of 359/326 mAh g1^{-1} and high capacity retention of 80% after 100 cycles. The high crystalline αα-V2_2O5_5 shows two 2-phase transition processes with the formation of εε-Mg0.6_{0.6}V2_2O5_5 and Mg-rich Mgx_xV2_2O5_5 (x 1.0) during the first discharge. Mg-rich Mgx_xV2_2O5_5 (x 1.0) phase formed through electrochemical Mg-ion intercalation at room temperature is for the first time observed via XRD. Meanwhile, the cathode electrolyte interphase (CEI) in aqueous Mg-ion batteries is revealed for the first time. MgF2_2 originating from the decomposition of TFSI- is identified as the dominant component. This work offers a new approach for designing high-safety, low-cost, eco-friendly, and large ESW electrolytes for practical and novel aqueous multivalent batteries

    catena-Poly[zinc(II)-μ3-{hydrogen [1-hydr­oxy-2-(3-pyridinio)ethane-1,1-di­yl]diphospho­nato}]

    Get PDF
    In the polymeric title compound, [Zn(C7H9NO7P2)]n, the zinc(II) centre displays a tetra­hedral coordination geometry provided by four O atoms from three different phospho­nate groups. The crystal structure consists of ladder chains parallel to the b axis built up from vertex-sharing of ZnO4 and PO3C tetra­hedra. The chains are linked by strong intra- and inter­chain O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular assembly

    Electric field and exciton structure in CdSe nanocrystals

    Full text link
    Quantum Stark effect in semiconductor nanocrystals is theoretically investigated, using the effective mass formalism within a 4×44\times 4 Baldereschi-Lipari Hamiltonian model for the hole states. General expressions are reported for the hole eigenfunctions at zero electric field. Electron and hole single particle energies as functions of the electric field (EQD\mathbf{E}_{QD}) are reported. Stark shift and binding energy of the excitonic levels are obtained by full diagonalization of the correlated electron-hole Hamiltonian in presence of the external field. Particularly, the structure of the lower excitonic states and their symmetry properties in CdSe nanocrystals are studied. It is found that the dependence of the exciton binding energy upon the applied field is strongly reduced for small quantum dot radius. Optical selection rules for absorption and luminescence are obtained. The electric-field induced quenching of the optical spectra as a function of EQD\mathbf{E}_{QD} is studied in terms of the exciton dipole matrix element. It is predicted that photoluminescence spectra present anomalous field dependence of the emission lines. These results agree in magnitude with experimental observation and with the main features of photoluminescence experiments in nanostructures.Comment: 9 pages, 7 figures, 1 tabl

    Hadronic B Decays to Charmed Baryons

    Full text link
    We study exclusive B decays to final states containing a charmed baryon within the pole model framework. Since the strong coupling for ΛbBˉN\Lambda_b\bar B N is larger than that for ΣbBˉN\Sigma_b \bar BN, the two-body charmful decay BΣc0pˉB^-\to\Sigma_c^0\bar p has a rate larger than Bˉ0Λc+pˉ\bar B^0\to\Lambda_c^+\bar p as the former proceeds via the Λb\Lambda_b pole while the latter via the Σb\Sigma_b pole. By the same token, the three-body decay Bˉ0Σc++pˉπ\bar B^0\to\Sigma_c^{++}\bar p\pi^- receives less baryon-pole contribution than BΛc+pˉπB^-\to\Lambda_c^+\bar p\pi^-. However, because the important charmed-meson pole diagrams contribute constructively to the former and destructively to the latter, Σc++pˉπ\Sigma_c^{++}\bar p\pi^- has a rate slightly larger than Λc+pˉπ\Lambda_c^+\bar p\pi^-. It is found that one quarter of the BΛc+pˉπB^-\to \Lambda_c^+\bar p\pi^- rate comes from the resonant contributions. We discuss the decays Bˉ0Σc0pˉπ+\bar B^0\to\Sigma_c^0\bar p\pi^+ and BΣc0pˉπ0B^-\to\Sigma_c^0\bar p\pi^0 and stress that they are not color suppressed even though they can only proceed via an internal W emission.Comment: 25 pages, 6 figure
    corecore