1,405 research outputs found

    Baseline cerebral oximetry values in cardiac and vascular surgery patients: a prospective observational study

    Get PDF
    <p>Abstract</p> <p>Aim</p> <p>This study was conducted to evaluate baseline INVOS values and identify factors influencing preoperative baseline INVOS values in carotid endarterectomy and cardiac surgery patients.</p> <p>Methods</p> <p>This is a prospective observational study on 157 patients (100 cardiac surgery patients, 57 carotid endarterectomy patients). Data were collected on factors potentially related to baseline INVOS values. Data were analyzed with student's t-test, Chi-square, Pearson's correlation or Linear Regression as appropriate.</p> <p>Results</p> <p>100 cardiac surgery patients and 57 carotid surgery patients enrolled. Compared to cardiac surgery, carotid endarterectomy patients were older (71.05 ± 8.69 vs. 65.72 ± 11.04, P < 0.001), with higher baseline INVOS (P < 0.007) and greater stroke frequency (P < 0.002). Diabetes and high cholesterol were more common in cardiac surgery patients. Right side INVOS values were strongly correlated with left-side values in carotid (r = 0.772, P < 0.0001) and cardiac surgery patients (r = 0.697, P < 0.0001). Diabetes and high cholesterol were associated with significantly (P < 0.001) lower INVOS and smoking was associated with higher INVOS values in carotid, but not in cardiac surgery patients. Age, sex, CVA history, Hypertension, CAD, Asthma, carotid stenosis side and surgery side were not related to INVOS. Multivariate analysis showed that diabetes is strongly associated with lower baseline INVOS values bilaterally (P < 0.001) and explained 36.4% of observed baseline INVOS variability in carotid (but not cardiac) surgery.</p> <p>Conclusion</p> <p>Compared to cardiac surgery, carotid endarterectomy patients are older, with higher baseline INVOS values and greater stroke frequency. Diabetes and high cholesterol are associated with lower baseline INVOS values in carotid surgery. Right and left side INVOS values are strongly correlated in both patient groups.</p

    Fibromuscular dysplasia presenting as a renal infarction: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Fibromuscular dysplasia is a non-atherosclerotic, non-inflammatory disease that most commonly affects the renal and internal carotid arteries.</p> <p>Case presentation</p> <p>We present the case of a 44-year-old Caucasian man who was admitted with complaints of loin pain and hypertension. A computed tomography scan of the abdomen revealed a right renal infarction with a nodular aspect of the right renal artery. Subsequent renal angiography revealed a typical 'string of beads' pattern of the right renal artery with thrombus formation. Oral anticoagulation was started and the secondary hypertension was easily controlled with anti-hypertensive drugs. At follow-up, our patient refused percutaneous transluminal renal angioplasty as a definitive treatment.</p> <p>Conclusions</p> <p>Fibromuscular dysplasia is the most common cause of renovascular hypertension in patients under 50 years of age. Presentation with renal infarction is rare.</p> <p>In fibromuscular dysplasia, angioplasty has been proven to have, at least for some indications, an advantage over anti-hypertensive drugs. Therefore, hypertension secondary to fibromuscular dysplasia is the most common cause of curable hypertension.</p

    Dose-Specific Adverse Drug Reaction Identification in Electronic Patient Records: Temporal Data Mining in an Inpatient Psychiatric Population

    Get PDF
    BACKGROUND: Data collected for medical, filing and administrative purposes in electronic patient records (EPRs) represent a rich source of individualised clinical data, which has great potential for improved detection of patients experiencing adverse drug reactions (ADRs), across all approved drugs and across all indication areas. OBJECTIVES: The aim of this study was to take advantage of techniques for temporal data mining of EPRs in order to detect ADRs in a patient- and dose-specific manner. METHODS: We used a psychiatric hospital’s EPR system to investigate undesired drug effects. Within one workflow the method identified patient-specific adverse events (AEs) and links these to specific drugs and dosages in a temporal manner, based on integration of text mining results and structured data. The structured data contained precise information on drug identity, dosage and strength. RESULTS: When applying the method to the 3,394 patients in the cohort, we identified AEs linked with a drug in 2,402 patients (70.8 %). Of the 43,528 patient-specific drug substances prescribed, 14,736 (33.9 %) were linked with AEs. From these links we identified multiple ADRs (p < 0.05) and found them to occur at similar frequencies, as stated by the manufacturer and in the literature. We showed that drugs displaying similar ADR profiles share targets, and we compared submitted spontaneous AE reports with our findings. For nine of the ten most prescribed antipsychotics in the patient population, larger doses were prescribed to sedated patients than non-sedated patients; five patients exhibited a significant difference (p < 0.05). Finally, we present two cases (p < 0.05) identified by the workflow. The method identified the potentially fatal AE QT prolongation caused by methadone, and a non-described likely ADR between levomepromazine and nightmares found among the hundreds of identified novel links between drugs and AEs (p < 0.05). CONCLUSIONS: The developed method can be used to extract dose-dependent ADR information from already collected EPR data. Large-scale AE extraction from EPRs may complement or even replace current drug safety monitoring methods in the future, reducing or eliminating manual reporting and enabling much faster ADR detection. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s40264-014-0145-z) contains supplementary material, which is available to authorised users

    Monoclonal antibodies targeting the disintegrin-like domain of ADAMDEC1 modulates the proteolytic activity and enables quantification of ADAMDEC1 protein in human plasma

    Get PDF
    Decysin-1 (ADAMDEC1) is an orphan ADAM-like metalloprotease with unknown biological function and a short domain structure. ADAMDEC1 mRNA has previously been demonstrated primarily in macrophages and mature dendritic cells. Here, we generated monoclonal antibodies (mAbs) against the mature ADAMDEC1 protein, as well as mAbs specific for the ADAMDEC1 pro-form, enabling further investigations of the metalloprotease. The generated mAbs bind ADAMDEC1 with varying affinity and represent at least six different epitope bins. Binding of mAbs to one epitope bin in the C-terminal disintegrin-like domain efficiently reduces the proteolytic activity of ADAMDEC1. A unique mAb, also recognizing the disintegrin-like domain, stimulates the caseinolytic activity of ADAMDEC1 while having no significant effect on the proteolysis of carboxymethylated transferrin. Using two different mAbs binding the disintegrin-like domain, we developed a robust, quantitative sandwich ELISA and demonstrate secretion of mature ADAMDEC1 protein by primary human macrophages. Surprisingly, we also found ADAMDEC1 present in human plasma with an approximate concentration of 0.5 nM. The presence of ADAMDEC1 both in human plasma and in macrophage cell culture supernatant were biochemically validated using immunoprecipitation and Western blot analysis demonstrating that ADAMDEC1 is secreted in a mature form
    corecore