28 research outputs found

    Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe.

    Get PDF
    OBJECTIVE: In 2014 the European Union-funded E-PILEPSY project was launched to improve awareness of, and accessibility to, epilepsy surgery across Europe. We aimed to investigate the current use of neuroimaging, electromagnetic source localization, and imaging postprocessing procedures in participating centers. METHODS: A survey on the clinical use of imaging, electromagnetic source localization, and postprocessing methods in epilepsy surgery candidates was distributed among the 25 centers of the consortium. A descriptive analysis was performed, and results were compared to existing guidelines and recommendations. RESULTS: Response rate was 96%. Standard epilepsy magnetic resonance imaging (MRI) protocols are acquired at 3 Tesla by 15 centers and at 1.5 Tesla by 9 centers. Three centers perform 3T MRI only if indicated. Twenty-six different MRI sequences were reported. Six centers follow all guideline-recommended MRI sequences with the proposed slice orientation and slice thickness or voxel size. Additional sequences are used by 22 centers. MRI postprocessing methods are used in 16 centers. Interictal positron emission tomography (PET) is available in 22 centers; all using 18F-fluorodeoxyglucose (FDG). Seventeen centers perform PET postprocessing. Single-photon emission computed tomography (SPECT) is used by 19 centers, of which 15 perform postprocessing. Four centers perform neither PET nor SPECT in children. Seven centers apply magnetoencephalography (MEG) source localization, and nine apply electroencephalography (EEG) source localization. Fourteen combinations of inverse methods and volume conduction models are used. SIGNIFICANCE: We report a large variation in the presurgical diagnostic workup among epilepsy surgery centers across Europe. This diversity underscores the need for high-quality systematic reviews, evidence-based recommendations, and harmonization of available diagnostic presurgical methods

    Anti-inflammatory effect of AMPK signaling pathway in rat model of diabetic neuropathy

    No full text
    Abstract Diabetic neuropathy (DN) is characterized as Hyperglycemia activates thdisturbed nerve conduction and progressive chronic pain. Inflammatory mediators, particularly cytokines, have a determinant role in the pathogenesis of neuropathic pain. The activity of adenosine monophosphate protein kinase (AMPK), an energy charge sensor with neuroprotective properties, is decreased in diabetes. It has been reported that activation of AMPK reduces the systemic inflammation through inhibition of cytokines. In this study, we aimed to investigate the probable protective effects of AMPK on DN in a rat of diabetes. DN was induced by injection of streptozotocin (65 mg/kg, i.p.). Motor nerve conduction velocities (MNCV) of the sciatic nerve, as an electrophysiological marker for peripheral nerve damage, were measured. Plasma levels of IL-6, TNF-a, CRP were assessed as relevant markers for inflammatory response. Also, the expression of phosphorylated AMPK (p-AMPK) and nonphosphorylated (non-p-AMPK) was evaluated by western blotting in the dorsal root ganglia. Histopathological assessment was performed to determine the extent of nerve damage in sciatic nerve. Our findings showed that activation of AMPK by metformin (300 mg/kg) significantly increased the MNCV and reduced the levels of inflammatory cytokines. In addition, we showed that administration of metformin increased the expression of p-AMPK as well as decline in the level of non p-AMPK. Our results demonstrated that co-administration of dorsomorphin with metformin reversed the beneficial effects of metformin. In conclusion, the results of this study demonstrated that the activation of AMPK signaling pathway in diabetic neuropathy might be associated with the anti-inflammatory response
    corecore