24 research outputs found

    Search for the standard model Higgs boson at LEP

    Get PDF

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Evolution of thermal properties of natural rubber nanocomposites functionalized by nickel–zinc ferrite and potassium strontium niobate nanopowders

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Processo FAPESP: 2009/00523-8CNPq: 454843/2014-3CNPq: 455323/2014-3CNPq: 480377/2013-8Several composites and nanocomposites based on a polymeric matrix and ceramic fillers are being pursued for use as multifunctional and innovative materials. Nevertheless, there is a series of challenges to be solved in this area such as the understanding of the role of interfaces and the synergy between matrix and fillers. In this work, vulcanized natural rubber nanocomposites were prepared with different concentrations of two kinds of ceramic nanoparticles, potassium strontium niobate (KSr2Nb5O15 or KSN) and nickel–zinc ferrite (Ni0.5Zn0.5Fe2O4 or NZF), synthesized by a chemical method known as the modified polyol method. Morphological and thermal characterizations were carried out by AFM, TG/DTG, TG/FTIR and DSC. The thermal properties of nanocomposites were compared and discussed as functions of concentration, type and surface of nanoparticles. The results obtained suggest that the base concentration for both types of nanoparticles inside the polymer matrix volume greatly adds to the increase in thermal stability up to 11 % and the glass transition temperature up to 10 °C. A similar evolution for the glass transition temperature (Tg), thermal stability temperature (TS) and dielectric permittivity (ε′) was identified, suggesting that these phenomena are mainly dominated by the same mechanisms. These results point to the possibility for the thermal parameter modulation in magnetic and ferroelectric nanocomposites by means of a suitable control of concentration and properties of the KSN and NZF nanoparticles

    Highly porous 45S5 bioglass-derived glass–ceramic scaffolds by gelcasting of foams

    No full text
    Several types of alloplastic (artificial) grafts, known as scaffolds, have been developed for the treatment of bone defects caused by trauma and/or infection. Among the materials used to manufacture scaffolds, 45S5 Bioglass is a bioceramic that arouses significant interest due to ease preparation and excellent bioactive response. Among the various processing methods cited in the literature for the production of bioactive glass scaffolds, gelcasting is a method that produces macroporous structures, with interconnected and spherical pores and high mechanical strength. However, in the literature there are few reports about bioactive glass scaffolds produced by gelcasting method. In this work, 45S5-BG scaffolds were produced by gelcasting of foams varying the amount of foaming agent in order to optimize the desirable characteristics of the scaffold. The scaffolds show porosity between 70 and 86% and compressive strength of 1.22 +/- 0.7 and 0.78 +/- 0.4 MPa. In the biological studies, all 45S5-BG scaffolds showed cytocompatibility towards human osteoblastic cells and bioactive properties using SBF assay.Sao Paulo Research Foundation-FAPESPNational Council for Scientific and Technological DevelopmentErasmus Mundus Program (Be Mundus Project)Univ Fed Sao Paulo UNIFESP, Inst Sci & Technol ICT, Bioceram Lab BIOCERAM, BR-12231280 Sao Jose Dos Campos, SP, BrazilCNPEM, Brazilian Nanotechnol Natl Lab LNNANO, POB 6192, BR-13083970 Campinas, SP, BrazilUniv Porto FMDUP, Fac Med Dent, Lab Bone MetaUniv Fed Sao Paulo UNIFESP, Inst Sci & Technol ICT, Bioceram Lab BIOCERAM, BR-12231280 Sao Jose Dos Campos, SP, BrazilFAPESP: 2015/246597CNPq: 456461/2014-0Web of Scienc
    corecore