112 research outputs found

    Growing at the limit: Reef growth sensitivity to climate and oceanographic changes in the South Western Atlantic

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordWhilst the impacts of climatic and oceanographic change on lower latitude reefs are increasingly well documented, our understanding of how reef-building has fluctuated in higher latitude settings remains limited. Here, we explore the timing and longevity of reef-building through the mid- to late Holocene in the most southerly known reef (24°S) in the Western Atlantic. Reef core data show that reef growth was driven by a single coral species, Madracis decactis, and occurred over two phases since ~6000 calibrated (cal.) yr B.P.. These records further indicate that there was a clear growth hiatus from ~5500 to 2500 cal. yr B.P., and that there is no evidence of reef accretion on the Queimada Grande Reef (QGR) over the past 2000 yrs. It thus presently exists as a submerged senescent structure colonized largely by non-reef building organisms. Integration of these growth data with those from sites further north (18°S and 21°S) suggests that Intertropical Convergence Zone (ITCZ), South Westerlies Winds (SWW) and El Niño-Southern Oscillation (ENSO) variability and shifts during the Holocene drove changes in the position of the Brazil-Falklands/Malvinas Confluence (BFMC), and that this has had a strong regional influence on the timing and longevity of reef growth. Our results add new evidence to the idea that reef growth in marginal settings can rapidly turn-on or -off according to regional environmental changes, and thus are of relevance for predicting high latitude reef growth potential under climate change.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)razilian Research Council (CNPq

    HIV prevalence among female sex workers, drug users and men who have sex with men in Brazil: A Systematic Review and Meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Brazilian response towards AIDS epidemic is well known, but the absence of a systematic review of vulnerable populations ─ men who have sex with men (MSM), female sex workers (FSW), and drug users (DU) remains a main gap in the available literature. Our goal was to conduct a systematic review and meta-analysis of studies assessing HIV prevalence among MSM, FSW and DU, calculating a combined pooled prevalence and summarizing factors associated the pooled prevalence for each group.</p> <p>Methods</p> <p>Nine electronic databases (MEDLINE via PubMed, EMBASE, Cochrane CENTRAL, AIDSLINE, AMED, CINAHL, TOXNET, SciELO, and ISI-Web of Science) were searched for peer-reviewed papers published in English, French, Spanish or Portuguese, from 1999 to 2009. To be included in the review, studies had to measure HIV prevalence and/or incidence as the primary outcome among at least one specific population under analysis.</p> <p>Results</p> <p>The studies targeting the three populations analyzed mostly young participants aged 30 years or less. Among FSW, eight studies were selected (3,625 participants), consistently identifying higher condom use with sexual clients than with occasional and stable partners. The combined HIV prevalence for FSW was 6.2 (95% CI: 4.4-8.3). Ten studies targeting MSM were identified (6,475 participants). Unprotected anal intercourse was commonly reported on those studies, but with great variability according to the nature of the relationship - stable vs. occasional sex partners - and sexual practice - receptive vs. insertive anal sex. Pooled HIV prevalence for MSM was 13.6 (95% CI: 8.2-20.2). Twenty nine studies targeting DU were identified (13,063 participants). Those studies consistently identified injection drug use and syringe/needle sharing as key predictors of HIV-infection, as well as engagement in sex work and male-to-male sex. The combined HIV prevalence across studies targeting DU was 23.1 (95% CI: 16.7-30.2).</p> <p>Conclusions</p> <p>FSW, MSM and DU from Brazil have a much risk of acquiring HIV infection compared to the general population, among which HIV prevalence has been relatively low (~0.6%). Those vulnerable populations should be targeted by focused prevention strategies that provide accurate information, counseling and testing, as well as concrete means to foster behavior change (e.g. access to condoms, drug abuse treatment, and clean syringes in the case of active injecting drug users), tailored to gender and culture-specific needs. Programs that provide these services need to be implemented on public health services throughout the country, in order to decrease the vulnerability of those populations to HIV infection.</p

    A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type

    Full text link
    [EN] All variables affecting the morphology of mesoporous silica nanoparticles (MSN) should be carefully analyzed in order to truly tailored design their mesoporous structure according to their final use. Although complete control on MCM-41 synthesis has been already claimed, reproducibility and repeatability of results remain a big issue due to the lack of information reported in literature. Stirring rate, reaction volume, and system configuration (i.e., opened or closed reactor) are three variables that are usually omitted, making the comparison of product characteristics difficult. Specifically, the rate of solvent evaporation is seldom disclosed, and its influence has not been previously analyzed. These variables were systematically studied in this work, and they were proven to have a fundamental impact on final particle morphology. Hence, a high degree of circularity (C = 0.97) and monodispersed particle size distributions were only achieved when a stirring speed of 500 rpm and a reaction scale of 500 mL were used in a partially opened system, for a 2 h reaction at 80 degrees C. Well-shaped spherical mesoporous silica nanoparticles with a diameter of 95 nm, a pore size of 2.8 nm, and a total surface area of 954 m(2) g(-1) were obtained. Final characteristics made this product suitable to be used in biomedicine and nanopharmaceutics, especially for the design of drug delivery systems.This study was funded partially by Departamento Administrativo de Ciencia TecnologĂ­a e InnovaciĂłn–COLCIENCIAS (recipient, Angela A. BeltrĂĄn-Osuna); Ministerio de EconomĂ­a y Competitividad, MINECO, research number MAT2016-76039-C4-1-R (Recipient, JosĂ© L. GĂłmez-Ribelles); and Universidad Nacional de Colombia, grant number DIB201010021438 (Recipient, Jairo E. Perilla).BeltrĂĄn-Osuna, A.; GĂłmez Ribelles, JL.; Perilla-Perilla, JE. (2017). A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. Journal of Nanoparticle Research. 19(12):1-14. https://doi.org/10.1007/s11051-017-4077-2S1141912Barrabino A (2011) Synthesis of mesoporous silica particles with control of both pore diameter and particle size. Master Thesis, Chalmers University of Technology, SwedenBastos FS, Lima OA, Filho CR, Fernandes LD (2011) Mesoporous molecular sieve MCM-41 synthesis from fluoride media. Brazilian. J Chem Eng 28:649–658Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843. https://doi.org/10.1021/ja00053a020BeltrĂĄn-Osuna AA, Perilla JE (2016) Colloidal and spherical mesoporous silica particles: synthesis and new technologies for delivery applications. J Sol-Gel Sci Technol 77(2):480–496. https://doi.org/10.1007/s10971-015-3874-2Bernardos A, MondragĂłn L, Aznar E et al (2010) Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with “saccharides”. ACS Nano 4(11):6353–6368. https://doi.org/10.1021/nn101499dBharti C, Nagaich U, Pal AK, Gulati N (2015) Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig 5(3):124–133. https://doi.org/10.4103/2230-973X.160844Brevet D, Hocine O, Delalande A, Raehm L, Charnay C, Midoux P, Durand JO, Pichon C (2014) Improved gene transfer with histidine-functionalized mesoporous silica nanoparticles. Int J Pharm 471(1-2):197–205. https://doi.org/10.1016/j.ijpharm.2014.05.020Cai Q, Luo Z, Pang W et al (2001) Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium. Chem Mater 13(2):258–263. https://doi.org/10.1021/cm990661zChakraborty I, Mascharak PK (2016) Mesoporous silica materials and nanoparticles as carriers for controlled and site-specific delivery of gaseous signaling molecules. Microporous Mesoporous Mater 234:409–419. https://doi.org/10.1016/j.micromeso.2016.07.028Chen L, Zhang Z, Yao X, Chen X, Chen X (2015a) Intracellular pH-operated mechanized mesoporous silica nanoparticles as potential drug carries. Microporous Mesoporous Mater 201:169–175. https://doi.org/10.1016/j.micromeso.2014.09.023Chen X, Yao X, Wang C, Chen L, Chen X (2015b) Mesoporous silica nanoparticles capped with fluorescence-conjugated cyclodextrin for pH-activated controlled drug delivery and imaging. Microporous Mesoporous Mater 217:46–53. https://doi.org/10.1016/j.micromeso.2015.06.012Chen Y, Chen H, Shi J (2013) In vivo bio-safety evaluations and diagnostic / therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater 25(23):3144–3176. https://doi.org/10.1002/adma.201205292Chen Y, Shi X, Han B, Qin H, Li Z, Lu Y, Wang J, Kong Y (2012) The complete control for the nanosize of spherical MCM-41. J Nanosci Nanotechnol 12(9):7239–7249. https://doi.org/10.1166/jnn.2012.6459Cheng Y-J, Zeng X, Cheng D-B, Xu XD, Zhang XZ, Zhuo RX, He F (2016) Functional mesoporous silica nanoparticles (MSNs) for highly controllable drug release and synergistic therapy. Colloids Surfaces B Biointerfaces 145:217–225. https://doi.org/10.1016/j.colsurfb.2016.04.051Crommelin DJA, Florence AT (2013) Towards more effective advanced drug delivery systems. Int J Pharm 454(1):496–511. https://doi.org/10.1016/j.ijpharm.2013.02.020Edler KJ (1997) Synthesis and characterisation of the mesoporous molecular sieve, MCM-41. Doctoral dissertation, The Australian National University, AustraliaGuo Z, Liu X-M, Ma L, Li J, Zhang H, Gao YP, Yuan Y (2013) Effects of particle morphology, pore size and surface coating of mesoporous silica on naproxen dissolution rate enhancement. Colloids Surf B Biointerfaces 101:228–235. https://doi.org/10.1016/j.colsurfb.2012.06.026Han N, Wang Y, Bai J, Liu J, Wang Y, Gao Y, Jiang T, Kang W, Wang S (2016) Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous Mesoporous Mater 219:209–218. https://doi.org/10.1016/j.micromeso.2015.08.006Hu X, Wang Y, Peng B (2014) Chitosan-capped mesoporous silica nanoparticles as pH-responsive nanocarriers for controlled drug release. Chem - An Asian J 9(1):319–327. https://doi.org/10.1002/asia.201301105Huh S, Wiench JW, Yoo J et al (2003) Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mater 15(22):4247–4256. https://doi.org/10.1021/cm0210041Ikari K, Suzuki K, Imai H (2006) Structural control of mesoporous silica nanoparticles in a binary surfactant system. Langmuir 22(2):802–806. https://doi.org/10.1021/la0525527Iliade P, Miletto I, Coluccia S, Berlier G (2012) Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: a physico-chemical characterization. Res Chem Intermed 38(3-5):785–794. https://doi.org/10.1007/s11164-011-0417-5IUPAC (1985) Reporting physisorption data for gas/solid systems. Pure Appl Chem 57:603–619IUPAC (2014) Compendium of chemical terminology-gold book, 2.3.3. International Union of Pure and Applied ChemistryKhezri K, Roghani-Mamaqani H, Sarsabili M, Sobani M, Mirshafiei-Langari SA (2014) Spherical mesoporous silica nanoparticles/tailor-made polystyrene nanocomposites by in situ reverse atom transfer radical polymerization. Polym Sci Ser B 56(6):909–918. https://doi.org/10.1134/S1560090414660026Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712. https://doi.org/10.1038/359710a0Lelong G, Bhattacharyya S, Kline S, Cacciaguerra T, Gonzalez MA, Saboungi ML (2008) Effect of surfactant concentration on the morphology and texture of MCM-41 materials. J Phys Chem C 112(29):10674–10680. https://doi.org/10.1021/jp800898nLv X, Zhang L, Xing F, Lin H (2016) Controlled synthesis of monodispersed mesoporous silica nanoparticles: particle size tuning and formation mechanism investigation. Microporous Mesoporous Mater 225:238–244. https://doi.org/10.1016/j.micromeso.2015.12.024Mamaeva V, Sahlgren C, LindĂ©n M (2013) Mesoporous silica nanoparticles in medicine: recent advances. Adv Drug Deliv Rev 65(5):689–702. https://doi.org/10.1016/j.addr.2012.07.018Manzano M, Aina V, AreĂĄn CO, Balas F, Cauda V, Colilla M, Delgado MR, Vallet-RegĂ­ M (2008) Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J 137(1):30–37. https://doi.org/10.1016/j.cej.2007.07.078Merkus HG (2009) Particle size measurements: fundamentals, practice, quality. Springer Science +Businees Media B.V, The NetherlandsMorishige K, Fujii H, Uga M, Kinukawa D (1997) Capillary critical point of argon, nitrogen, oxygen, ethylene, and carbon dioxide in MCM-41. Langmuir 13(13):3494–3498. https://doi.org/10.1021/la970079ude Padua Oliveira DC, de Barros ALB, Belardi RM et al (2016) Mesoporous silica nanoparticles as a potential vaccine adjuvant against Schistosoma mansoni. J Drug Deliv Sci Technol 35:234–240. https://doi.org/10.1016/j.jddst.2016.07.002Phillips E, Penate-Medina O, Zanzonico PB, Carvajal RD, Mohan P, Ye Y, Humm J, Gonen M, Kalaigian H, Schoder H, Strauss HW, Larson SM, Wiesner U, Bradbury MS (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med 6(260):260ra149. https://doi.org/10.1126/scitranslmed.3009524Qu F, Zhu G, Lin H, Zhang W, Sun J, Li S, Qiu S (2006) A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem 179(7):2027–2035. https://doi.org/10.1016/j.jssc.2006.04.002Rafi AA, Mahkam M, Davaran S, Hamishehkar H (2016) A smart pH-responsive nano-carrier as a drug delivery system: a hybrid system comprised of mesoporous nanosilica MCM-41 (as a nano-container) & a pH-sensitive polymer (as smart reversible gatekeepers): preparation, characterization and in vitro releas. Eur J Pharm Sci 93:64–73. https://doi.org/10.1016/j.ejps.2016.08.005Rouquerol J, Rouquerol F, Llewellyn P, et al (2014) Adsorption by powders and porous solids: principles, methodology and applications. Elsevier Ltd.Selvam P, Bhatia SK, Sonwane CG (2001) Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Ind Eng Chem Res 40(15):3237–3261. https://doi.org/10.1021/ie0010666Shi YT, Cheng HY, Geng Y, Nan HM, Chen W, Cai Q, Chen BH, Sun XD, Yao YW, Li HD (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198. https://doi.org/10.1016/j.matchemphys.2009.10.045Shibata H, Chiba Y, Kineri T, Matsumoto M, Nishio K (2010) The effect of heat treatment on the interplanar spacing of the mesostructure during the synthesis of mesoporous MCM-41 silica. Colloids Surfaces A Physicochem Eng Asp 358(1-3):1–5. https://doi.org/10.1016/j.colsurfa.2009.12.020Slowing II, Vivero-Escoto JL, Wu C-W, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288. https://doi.org/10.1016/j.addr.2008.03.012Sun R, Wang W, Wen Y, Zhang X (2015) Recent advance on mesoporous silica nanoparticles-based controlled release system: intelligent switches open up. Nano 5(4):2019–2053. https://doi.org/10.3390/nano5042019U.S. Department of Health & Human Services (2015) Cancer Nanotechnology PlanUkmar T, Maver U, PlaninĆĄek O, Kaučič V, Gaberơček M, Godec A (2011) Understanding controlled drug release from mesoporous silicates: theory and experiment. J Control Release 155(3):409–417. https://doi.org/10.1016/j.jconrel.2011.06.038Vallet-Regi M, Arcos Navarrete D (2016) Nanoceramics in clinical use, 1st edn. The Royal Society of Chemistry, CambridgeVallet-Regi M, RĂĄmila A, Del Real RP, PĂ©rez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. https://doi.org/10.1021/cm0011559Varga N, Benko M, Sebok D et al (2015) Mesoporous silica core-shell composite functionalized with polyelectrolytes for drug delivery. Microporous Mesoporous Mater 213:134–141. https://doi.org/10.1016/j.micromeso.2015.02.008Wang Y, Zhao Q, Han N, Bai L, Li J, Liu J, Che E, Hu L, Zhang Q, Jiang T, Wang S (2015) Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomed Nanotechnol Biol Med 11(2):313–327. https://doi.org/10.1016/j.nano.2014.09.014Wanyika H, Gatebe E, Kioni P et al (2011) Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents. African J Pharm Pharmacol 5(21):2402–2410. https://doi.org/10.5897/AJPP11.592Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42(9):3862–3875. https://doi.org/10.1039/c3cs35405aXu X, LĂŒ S, Gao C, Wang X, Bai X, Gao N, Liu M (2015a) Facile preparation of pH-sensitive and self-fluorescent mesoporous silica nanoparticles modified with PAMAM dendrimers for label-free imaging and drug delivery. Chem Eng J 266:171–178. https://doi.org/10.1016/j.cej.2014.12.075Xu X, LĂŒ S, Gao C, Wang X, Bai X, Duan H, Gao N, Feng C, Liu M (2015b) Polymeric micelle-coated mesop orous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug delivery. Chem Eng J 279:851–860. https://doi.org/10.1016/j.cej.2015.05.085Xu X, LĂŒ S, Gao C, Feng C, Wu C, Bai X, Gao N, Wang Z, Liu M (2016) Self-fluorescent and stimuli-responsive mesoporous silica nanoparticles using a double-role curcumin gatekeeper for drug delivery. Chem Eng J 300:185–192. https://doi.org/10.1016/j.cej.2016.04.087Yang Y, Yu C (2015) Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine nanotechnology. Biol Med 12(2):317–332. https://doi.org/10.1016/j.nano.2015.10.018Zhang H, Tong C, Sha J, Liu B, LĂŒ C (2015) Fluorescent mesoporous silica nanoparticles functionalized graphene oxide: a facile FRET-based ratiometric probe for Hg2+. Sensors Actuators B Chem 206:181–189. https://doi.org/10.1016/j.snb.2014.09.051Zhou C, Yan C, Zhao J, Wang H, Zhou Q, Luo W (2016) Rapid synthesis of morphology-controlled mesoporous silica nanoparticles from silica fume. J Taiwan Inst Chem Eng 62:307–312. https://doi.org/10.1016/j.jtice.2016.01.03

    Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    Get PDF
    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease

    Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation

    Get PDF
    The past few decades have witnessed an explosive synergy between physics and the life sciences. In particular, physical modelling in medicine and physiology is a topical research area. The present work focuses on parameter inference and uncertainty quantification in a 1D fluid‐dynamics model for quantitative physiology: the pulmonary blood circulation. The practical challenge is the estimation of the patient‐specific biophysical model parameters, which cannot be measured directly. In principle this can be achieved based on a comparison between measured and predicted data. However, predicting data requires solving a system of partial differential equations (PDEs), which usually have no closed‐form solution, and repeated numerical integrations as part of an adaptive estimation procedure are computationally expensive. In the present article, we demonstrate how fast parameter estimation combined with sound uncertainty quantification can be achieved by a combination of statistical emulation and Markov chain Monte Carlo (MCMC) sampling. We compare a range of state‐of‐the‐art MCMC algorithms and emulation strategies, and assess their performance in terms of their accuracy and computational efficiency. The long‐term goal is to develop a method for reliable disease prognostication in real time, and our work is an important step towards an automatic clinical decision support system
    • 

    corecore