17 research outputs found
Attaching-effacing lesions and intracellular penetration in HeLa cells and human duodenal mucosa by two Escherichia coli strains not belonging to the classical enteropathogenic E. coli serogroups
In the present study, we compared two strains of serotypes O88:H25 and O145:H45 with an enteropathogenic Escherichia coli (EPEC) adherence factor-positive (EAF+) strain of the classic enteropathogenic E. coli serotype O111ab:H2 for their association with HeLa cells and with biopsies of human duodenal mucosa. Both strains not belonging to the classic EPEC serotype showed virulence properties similar to those of the serotype O111ab:H2 strain, i.e., the production of attaching-effacing lesions and intracellular penetration in both systems. These virulence properties associated with the relatively high frequency at which the two serotypes had been detected in infant diarrhea in São Paulo, Brazil (T. A. T. Gomes, M. A. M. Vieira, I. K. Wachsmuth, P. A. Blake, and L. R. Trabulsi, J. Infect. Dis. 160:131-135, 1989) allowed us to suggest that strains of serotypes O88:H25 and O145:H45 should be included in the EAF+ EPEC category.</jats:p
Characterization of an antigen from Leishmania amazonensis amastigotes able to elicit protective responses in a murine model
Lymphoproliferative responses to an antigen from Leishmania amazonensis amastigotes with an apparent molecular mass of 30 kDa, termed p30, were evaluated with BALB/c mice. The p30 antigen was purified after separation of parasite extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by electroelution. Lymphoproliferative responses to p30 were obtained by subcutaneous immunization of animals with L. amazonensis amastigote extracts, and maximal stimulation indices were observed at an antigen concentration of 5 microg/ml. Induction of lymphoproliferation by p30 is stage specific, and no differences in the responses to this antigen between mice susceptible and resistant to L. amazonensis were detected. The predominant T cells characterized in the lymphocyte cultures were CD4+. Lymphokine analysis of the supernatants from these cultures indicated that Th1 is the subset involved in the lymphoproliferative responses to the antigen. BALB/c mice immunized with p30 and challenged with L. amazonensis amastigotes showed a very low level of infection, indicating a protective role for p30 and a correlation between Th1 and protection. Further biochemical characterization studies showed that this antigen presents cysteine proteinase activity.</jats:p
Characterization of an antigen from Leishmania amazonensis amastigotes able to elicit protective responses in a murine model.
Lymphoproliferative responses to an antigen from Leishmania amazonensis amastigotes with an apparent molecular mass of 30 kDa, termed p30, were evaluated with BALB/c mice. The p30 antigen was purified after separation of parasite extracts by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by electroelution. Lymphoproliferative responses to p30 were obtained by subcutaneous immunization of animals with L. amazonensis amastigote extracts, and maximal stimulation indices were observed at an antigen concentration of 5 microg/ml. Induction of lymphoproliferation by p30 is stage specific, and no differences in the responses to this antigen between mice susceptible and resistant to L. amazonensis were detected. The predominant T cells characterized in the lymphocyte cultures were CD4+. Lymphokine analysis of the supernatants from these cultures indicated that Th1 is the subset involved in the lymphoproliferative responses to the antigen. BALB/c mice immunized with p30 and challenged with L. amazonensis amastigotes showed a very low level of infection, indicating a protective role for p30 and a correlation between Th1 and protection. Further biochemical characterization studies showed that this antigen presents cysteine proteinase activity
Morphologic and Clinical Effects of Subretinal Injection of Indocyanine Green and Infracyanine Green in Rabbits
Intestine of dystrophic mice presents enhanced contractile resistance to stretching despite morphological impairment
Protein dystrophin is a component of the dystrophin-associated protein complex, which links the contractile machinery to the plasma membrane and to the extra-cellular matrix. Its absence leads to a condition known as Duchenne muscular dystrophy (DMD), a disease characterized by progressive skeletal muscle degeneration, motor disability, and early death. in mdx mice, the most common DMD animal model, loss of muscle cells is observed, but the overall disease alterations are less intense than in DMD patients. Alterations in gastrointestinal tissues from DMD patients and mdx mice are not yet completely understood. Thus, we investigated the possible relationships between morphological (light and electron microscopy) and contractile function (by recording the isometric contractile response) with alterations in Ca2+ handling in the ileum of mdx mice. We evidenced a 27% reduction in the ileal muscular layer thickness, a partial damage to the mucosal layer, and a partial damage to mitochondria of the intestinal myocytes. Functionally, the ileum from mdx presented an enhanced responsiveness during stretch, a mild impairment in both the electromechanical and pharmacomechanical signaling associated with altered calcium influxinduced contraction, with no alterations in the sarcoplasmic reticulum Ca2+ storage (maintenance of the caffeine and thapsigargin-induced contraction) compared with control animals. Thus, it is evidenced that the protein dystrophin plays an important role in the preservation of both the microstructure and ultrastructure of mice intestine, while exerting a minor but important role concerning the intestinal contractile responsiveness and calcium handling.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Microscopia Eletron, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Pharmacol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Microscopia Eletron, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Pharmacol, BR-04023062 São Paulo, BrazilFAPESP: 07/58132-9FAPESP: 12/15716-9FAPESP: 07/59976-6Web of Scienc
Interaction of insect trypanosomatids with mosquitoes, sand fly and the respective insect cell lines
Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis
The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.<br>A diferenciação de formas epimastigotas (proliferativas) do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas), pode ser reproduzida em laboratório incubando-se as células em um meio quimicamente definido que imita a urina do inseto vetor deste parasita. Os epimastigotas têm um núcleo esférico, o flagelo se projeta da metade do corpo do protozoário e o cinetoplasto (organela que possui o DNA mitocondrial) possui formato de disco. Os tripomastigotas metacíclicos têm um núcleo alongado com o flagelo emergindo da extremidade posterior da célula associado ao cinetoplasto esférico. Neste trabalho descrevemos as mudanças morfológicas que ocorrem durante essa transformação e caracterizamos uma nova forma intermediária do parasita usando reconstrução tridimensional de cortes seriados, visualizados por microscopia eletrônica de transmissão. Essa nova forma intermediária é caracterizada pela compressão do cinetoplasto contra o núcleo alongado, indicando que a metaciclogênese envolve movimentos ativos do cinetoplasto associado à estrutura flagelar em relação ao corpo celular. Como tripomastigotas metacíclicos transcrevem menos que as formas epimastigotas proliferativas, verificamos a presença da RNA polimerase II e medimos a atividade transcricional durante o processo de diferenciação. A presença da enzima e a atividade transcricional permanecem inalteradas durante todas as etapas da metaciclogênese, desaparecendo apenas quando as formas metacíclicas são formadas. Sugerimos que a diferenciação requer uma atividade transcricional, necessária para uma intensa remodelação da célula, que acontece até o cinetoplasto e o flagelo atingirem uma posição posterior do corpo do tripomastigota metacíclico
