11,408 research outputs found

    A Random Multifractal Tilling

    Full text link
    We develop a multifractal random tilling that fills the square. The multifractal is formed by an arrangement of rectangular blocks of different sizes, areas and number of neighbors. The overall feature of the tilling is an heterogeneous and anisotropic random self-affine object. The multifractal is constructed by an algorithm that makes successive sections of the square. At each nn-step there is a random choice of a parameter ρi\rho_i related to the section ratio. For the case of random choice between ρ1\rho_1 and ρ2\rho_2 we find analytically the full spectrum of fractal dimensions

    Reconstructing Supersymmetry at ILC/LHC

    Full text link
    Coherent analyses of experimental results from LHC and ILC will allow us to draw a comprehensive and precise picture of the supersymmetric particle sector. Based on this platform the fundamental supersymmetric theory can be reconstructed at the high scale which is potentially close to the Planck scale. This procedure will be reviewed for three characteristic examples: minimal supergravity as the paradigm; a left-right symmetric extension incorporating intermediate mass scales; and a specific realization of string effective theories.Comment: published in Proceedings of the Ustron Conference 2005; technical LaTeX problem correcte

    Abrupt field-induced transition triggered by magnetocaloric effect in phase-separated manganites

    Get PDF
    The occurrence at low temperatures of an ultrasharp field-induced transition in phase separated manganites is analyzed. Experimental results show that magnetization and specific heat step-like transitions below 5 K are correlated with an abrupt change of the sample temperature, which happens at a certain critical field. This temperature rise, a magnetocaloric effect, is interpreted as produced by the released energy at the transition point, and is the key to understand the existence of the abrupt field-induced transition. A qualitative analysis of the results suggests the existence of a critical growing rate of the ferromagnetic phase, beyond which an avalanche effect is triggered.Comment: 6 pages, 4 figures included. Acepted for publication in Phys. Rev.

    The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics

    Full text link
    We prove that the distributional limit of the normalised number of returns to small neighbourhoods of periodic points of non-uniformly hyperbolic dynamical systems is compound Poisson. The returns to small balls around a fixed point in the phase space correspond to the occurrence of rare events, or exceedances of high thresholds, so that there is a connection between the laws of Return Times Statistics and Extreme Value Laws. The fact that the fixed point in the phase space is a repelling periodic point implies that there is a tendency for the exceedances to appear in clusters whose average sizes is given by the Extremal Index, which depends on the expansion of the system at the periodic point. We recall that for generic points, the exceedances, in the limit, are singular and occur at Poisson times. However, around periodic points, the picture is different: the respective point processes of exceedances converge to a compound Poisson process, so instead of single exceedances, we have entire clusters of exceedances occurring at Poisson times with a geometric distribution ruling its multiplicity. The systems to which our results apply include: general piecewise expanding maps of the interval (Rychlik maps), maps with indifferent fixed points (Manneville-Pomeau maps) and Benedicks-Carleson quadratic maps.Comment: To appear in Communications in Mathematical Physic

    Does e-learning policy drive change in Higher Education?: A case study relating models of organisational change to e-learning implementation

    Get PDF
    Due to the heightened competition introduced by the potential global market and the need for structural changes within organisations delivering e-content, e-learning policy is beginning to take on a more significant role within the context of educational policy per se. For this reason, it is becoming increasingly important to establish what effect such policies have and how they are achieved. This paper addresses this question, illustrating five ways in which change is understood (Fordist, evolutionary, ecological, community of practice and discourse-oriented) and then using this range of perspectives to explore how e-learning policy drives change (both organisational and pedagogic) within a selected higher education institution. The implications of this case are then discussed, and both methodological and pragmatic conclusions are drawn, considering the relative insights offered by the models and ways in which change around e-learning might be supported or promoted

    Reconstruction of Fundamental SUSY Parameters

    Get PDF
    We summarize methods and expected accuracies in determining the basic low-energy SUSY parameters from experiments at future e+^+e^- linear colliders in the TeV energy range, combined with results from LHC. In a second step we demonstrate how, based on this set of parameters, the fundamental supersymmetric theory can be reconstructed at high scales near the grand unification or Planck scale. These analyses have been carried out for minimal supergravity [confronted with GMSB for comparison], and for a string effective theory.Comment: 8 pages, latex, 7 figures, expanded version of contributions to the proceedings of ICHEP.2002 (Amstersdam) and LCWS.2002 (Jeju Island

    Bosonic Seesaw in the Unparticle Physics

    Full text link
    Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the (scalar) unparticle, Higgs and the gauge bosons. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. In the diagonalization process, it is important to have zero value in the (1,1)-element of the mass matrix. In fact, the conformal invariance in the hidden sector can actually assure the zero of that element. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics.Comment: 5 pages, no figure; added one more referenc
    corecore