62 research outputs found

    Comparison of functional connectivity metrics using an unsupervised approach: A source resting-state EEG study

    Get PDF
    The study of inter-regional synchronization between brain regions represents an important challenge in neuroimaging. Electroencephalography, given the high temporal resolution, allows the investigation of brain activity, connectivity, and network organization in time and frequency domains. Here, some of the most common metrics used to estimate the strength of functional interaction between pairs of brain regions are compared using source reconstructed time-series from resting-state high-density electroencephalography. Results show that the investigated metrics, on the basis of their connectivity profiles, may be naturally grouped into two main clusters. In particular, this finding shows that metrics which tend to limit the effects of volume conduction/signal leakage, although based on different properties of the original signals, may be partitioned into a specific homogeneous cluster, whilst the metrics which do not correct for these effects form a separate cluster. Moreover, this effect is even clearer when the analysis is replicated at scalp level. In conclusion, although within each cluster different metrics may still capture specific connectivity profiles, this study provides evidence that the result of an arbitrary choice of metric that either does or does not correct for volume conduction and signal leakage is more relevant

    Changes in MEG resting-state networks are related to cognitive decline in type 1 diabetes mellitus patients

    Get PDF
    OBJECTIVE: Integrity of resting-state functional brain networks (RSNs) is important for proper cognitive functioning. In type 1 diabetes mellitus (T1DM) cognitive decrements are commonly observed, possibly due to alterations in RSNs, which may vary according to microvascular complication status. Thus, we tested the hypothesis that functional connectivity in RSNs differs according to clinical status and correlates with cognition in T1DM patients, using an unbiased approach with high spatio-temporal resolution functional network.; METHODS: Resting-state magnetoencephalographic (MEG) data for T1DM patients with (n=42) and without (n=41) microvascular complications and 33 healthy participants were recorded. MEG time-series at source level were reconstructed using a recently developed atlas-based beamformer. Functional connectivity within classical frequency bands, estimated by the phase lag index (PLI), was calculated within eight commonly found RSNs. Neuropsychological tests were used to assess cognitive performance, and the relation with RSNs was evaluated.; RESULTS: Significant differences in terms of RSN functional connectivity between the three groups were observed in the lower alpha band, in the default-mode (DMN), executive control (ECN) and sensorimotor (SMN) RSNs. T1DM patients with microvascular complications showed the weakest functional connectivity in these networks relative to the other groups. For DMN, functional connectivity was higher in patients without microangiopathy relative to controls (all p<0.05). General cognitive performance for both patient groups was worse compared with healthy controls. Lower DMN alpha band functional connectivity correlated with poorer general cognitive ability in patients with microvascular complications.; DISCUSSION: Altered RSN functional connectivity was found in T1DM patients depending on clinical status. Lower DMN functional connectivity was related to poorer cognitive functioning. These results indicate that functional connectivity may play a key role in T1DM-related cognitive dysfunction

    How time window influences biometrics performance: an EEG-based fingerprints connectivity study

    Full text link
    EEG-based biometric represents a relatively recent research field that aims to recognize individuals based on their recorded brain activity by means of electroencephalography (EEG). Among the numerous features that have been proposed, connectivity-based approaches represent one of the more promising methods tested so far. In this paper, we investigate how the performance of an EEG biometric system varies with respect to different time windows to understand if it is possible to define the optimal duration of EEG signal that can be used to extract those distinctive features. Overall, the results have shown a pronounced effect of the time window on the biometric performance measured in terms of EER (equal error rate) and AUC (area under the curve), with an evident increase of the biometric performance with an increase of the time window. In conclusion, we want to highlight that EEG connectivity has the potential to represent an optimal candidate as EEG fingerprint and that, in this context, it is very important to define a sufficient time window able to collect the subject specific features. Moreover, our preliminary results show that extending the window size beyond a certain maximum does not improve biometric systems' performance

    Case Report: Modulation of Effective Connectivity in Brain Networks after Prosthodontic Tooth Loss Repair

    Get PDF
    INTRODUCTION. Recent neuroimaging studies suggest that dental loss replacements induce changes in neuroplasticity as well as in correlated connectivity between brain networks. However, as the typical temporal delay in detecting brain activity by neuroimaging cannot account for the influence one neural system exerts over another in a context of real activation (“effective” connectivity), it seems of interest to approach this dynamic aspect of brain networking in the time frame of milliseconds by exploiting electroencephalographic (EEG) data. MATERIAL AND METHODS. The present study describes one subject who received a new prosthodontic provisional implant in substitution for previous dental repairs. Two EEG sessions led with a portable device were recorded before and after positioning the new dental implant. By following MATLAB-EEGLAB processing supported by the plugins FIELDTRIP and SIFT, the independent component analysis (ICA) derived from EEG raw signals was rendered as current density fields and interpolated with the dipoles generated by each electrode for a dynamic study of the effective connectivity. One more recording session was undertaken six months after the placement of the final implant. RESULTS. Compared to the baseline, the new prosthodontic implant induced a novel modulation of the neuroplasticity in sensory-motor areas which was maintained following the definitive implant after six months, as revealed by changes in the effective connectivity from the basal strong enslavement of a single brain area over the others, to an equilibrate inter-related connectivity evenly distributed along the frontotemporal regions of both hemispheres. CONCLUSIONS. The rapid shift of the effective connectivity after positioning the new prosthodontic implant and its substantial stability after six months suggest the possibility that synaptic modifications, induced by novel sensory motor conditions, modulate the neuroplasticity and reshape the final dynamic frame of the interarea connectivity. Moreover, given the viability of the EEG practice, this approach could be of some interest in assessing the association between oral pathophysiology and neuronal networking

    Sleep‐related hypermotor epilepsy and non‐rapid eye movement parasomnias: Differences in the periodic and aperiodic component of the electroencephalographic power spectra

    Get PDF
    Over the last two decades, our understanding of clinical and pathophysiological aspects of sleep-related epileptic and non-epileptic paroxysmal behaviours has improved considerably, although it is far from complete. Indeed, even if many core characteristics of sleep-related hypermotor epilepsy and non-rapid eye movement parasomnias have been clarified, some crucial points remain controversial, and the overlap of the behavioural patterns between these disorders represents a diagnostic challenge. In this work, we focused on segments of multichannel sleep electroencephalogram free from clinical episodes, from two groups of subjects affected by sleep-related hypermotor epilepsy (N = 15) and non-rapid eye movement parasomnias (N = 16), respectively. We examined sleep stages N2 and N3 of the first part of the night (cycles 1 and 2), and assessed the existence of differences in the periodic and aperiodic components of the electroencephalogram power spectra between the two groups, using the Fitting Oscillations &amp; One Over f (FOOOF) toolbox. A significant difference in the gamma frequency band was found, with an increased relative power in sleep-related hypermotor epilepsy subjects, during both N2 (p &lt; .001) and N3 (p &lt; .001), and a significant higher slope of the aperiodic component in non-rapid eye movement parasomnias, compared with sleep-related hypermotor epilepsy, during N3 (p = .012). We suggest that the relative power of the gamma band and the slope extracted from the aperiodic component of the electroencephalogram signal may be helpful to characterize differences between subjects affected by non-rapid eye movement parasomnias and those affected by sleep-related hypermotor epilepsy

    EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganization is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG network analysis may be of help in monitoring and evaluating the clinical status of ALS patients

    “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true?

    Get PDF
    An emerging hypothesis from the recent literature explain how specific adverse factors related with growth retardation as well as of low birth weight (LBW) might influence renal development during fetal life and then the insurgence of hypertension and renal disease in adulthood. In this article, after introducing a brief overview of human nephrogenesis, the most important factors influencing nephron number at birth will be reviewed, focusing on the "in utero" experiences that lead to an increased risk of developing hypertension and/or kidney disease in adult. Since nephrogenesis in preterm human newborns does not stop at birth, but it continues for 4-6 weeks postnatally, a better knowledge of the mechanisms able to accelerate nephrogenesis in the perinatal period, could represent a powerful tool in the hands of neonatologists. We suggest to define this approach to a possible therapy of a deficient nephrogenesis at birth "physiological renal regenerating medicine". Our goal in preterm infants, especially VLBW, could be to prolong the nephrogenesis not only for 6 weeks after birth but until 36 weeks of post conceptual age, allowing newborn kidneys to restore their nephron endowment, escaping susceptibility to hypertension and to renal disease later in life
    • 

    corecore