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The scanning and computerized processing of images had
its birth in 1956 at the National Bureau of Standards (NBS,
nowNational Institute of Standards and Technology (NIST))
[1]. Image enhancement algorithms were some of the first to
be developed [2]. Half a century later, literally thousands of
image processing algorithms have been published. Some of
these have been specific to certain applications such as the
enhancement of latent fingerprints, whilst others have been
more generic in nature, applicable to all, yet master of none.
The scope of these algorithms is fairly expansive, ranging
from automatically extracting and delineating regions of in-
terest such as in the case of segmentation, to improving the
perceived quality of an image, by means of image enhance-
ment. Since the early years of image processing, as in many
subfields of software design, there has been a portion of the
design process dedicated to algorithm testing. Testing is the
process of determining whether or not a particular algorithm
has satisfied its specifications relating to criteria such as accu-
racy and robustness. A major limitation in the design of im-
age processing algorithms lies in the difficulty in demonstrat-
ing that algorithms work to an acceptable measure of perfor-
mance. The purpose of algorithm testing is two-fold. Firstly
it provides either a qualitative or a quantitative method of
evaluating an algorithm. Secondly, it provides a comparative
measure of the algorithm against similar algorithms, assum-
ing similar criteria are used. One of the greatest caveats in
designing algorithms incorporating image processing is how
to conceive the criteria used to analyze the results. Do we de-
sign a criterion which measures sensitivity, robustness, or ac-
curacy? Performance evaluation in the broadest sense refers
to a measure of some required behavior of an algorithm,
whether it is achievable accuracy, robustness, or adaptabil-
ity. It allows the intrinsic characteristics of an algorithm to
be emphasized, as well as the evaluation of its benefits and
limitations.

More often than not though, such testing has been lim-
ited in its scope. Part of this is attributable to the actual lack

of formal process used in performance evaluation of im-
age processing algorithms, from the establishment of testing
regimes, to the design of metrics. Selection of an appropri-
ate evaluation methodology is dependent on the objective
of the task. For example, in the context of image enhance-
ment, requirements are essentially different for screen-based
enhancement and enhancement which is embedded within a
subalgorithm. Screen-based enhancement is usually assessed
in a subjective manner, whereas when an algorithm is encap-
sulated within a larger system, subjective evaluation is not
available, and the algorithm itself must determine the quality
of a processed image. Very few approaches to the evaluation
of image processing algorithms can be found in the literature,
although the concept has been around for decades. A signif-
icant difficulty which arises in the evaluation of algorithms
is finding suitable metrics which provide an objective mea-
sure of performance. A performance metric is a meaningful
and computable measure used for quantitatively evaluating
the performance of any algorithm. Consider the process of
assessing image quality. There is no single quantitative met-
ric which correlates well with image quality as perceived by
the human visual system. The process of analyzing failure is
intrinsically coupled with the process of performance evalu-
ation. In order to ascertain whether an algorithm fails or not,
you have to define the characteristics of success. Failure anal-
ysis is the process of determining why an algorithm fails dur-
ing testing. The knowledge generated is then fed back to the
design process in order to engender refinements in the algo-
rithm. This is a difficult process in applications such as image
enhancement primarily because there is usually no reference
image which can be used as an “ideal” image. The assessment
of image quality plays an important role in applications such
as consumer electronics. Metrics could be used to monitor
or optimize image quality in digital cameras, benchmark and
evaluate image enhancement algorithms. There is no single
metric that correlates well with image quality as perceived
by the human visual system. Selection of an appropriate
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evaluation methodology is dependent on the objective of the
task. In the context of image enhancement, requirements are
essentially different for screen-based enhancement and en-
hancement that is embedded within an algorithm (as a sub-
algorithm).

The purpose of evaluating an algorithm is to understand
its behavior in dealing with different categories of images,
and/or help in estimating the best parameters for different
applications [3]. Ultimately this may involve some compar-
ison with similar algorithms, in order to rank their perfor-
mance and provide guidelines for choosing algorithms on the
basis of application domain [3]. Assessing the performance
of any algorithm in image processing is difficult because per-
formance depends on several factors, as concluded by Heath
et al. [4]:

(1) the algorithm itself,
(2) the nature of images used to measure the performance

of the algorithm,
(3) the algorithm parameters used in the evaluation,
(4) the method used for evaluating the algorithm.

The ease to which an algorithm can be evaluated is directly
proportional to the number of parameters it requires. For ex-
ample, a segmentation algorithm which has no parameters
bar, the image to be processed will be easier to evaluate than
one which has three parameters which need to be tailored
in order to obtain optimal performance. The nature of the
image itself also impacts performance. Evaluation with a set
“easy” images may produce a higher accuracy than the use
of more difficult images containing complex regions. There
are no rigid guidelines as to exactly how the process of per-
formance evaluation should be characterized, however there
are a number of facets to be considered [5]: testing protocol;
testing regime; performance indicators; performance met-
rics, and image databases.

The first of these, testing protocol relates to the succes-
sive approach used to perform testing. There are three ba-
sic tenets: visual assessment, statistical evaluation, and ground
truth evaluation. The first stage of performance evaluation
involves obtaining a qualitative impression of how well an
algorithm has performed. For example, when design begins
on a new algorithm, a few sample images may be used in
a coarse analysis of the usefulness of existing algorithms by
means of visual assessment. Visual assessment usually im-
plies comparing the processed image with the original one.
Algorithms judged useful at the first stage are investigated in
the next stage as to their accuracy using quantitative perfor-
mance metrics and ground truth data. The “final” stage of
evaluation looks at aspects of performance such as robust-
ness, adaptability, and reliability. This process may iterate
through a number of cycles. Next is the testing regime which
relates to the strategy used for testing the images. There are
four basic testing categories. The first of these is exhaustive
testing, which is a brute force approach to testing whereby
an algorithm is presented with every possible image in a
database to test. Such an approach can be overwhelming, and
should be limited to the verification component of the design
process. Next is boundary value testing, which evaluates a

subset of images identified as being representative. The third
regime relates to random testing in which images are indis-
criminately selected. This relates to a more statistically based
process of evaluating an algorithm providing more realistic
conditions. For instance, is it realistic to test a mass detec-
tion algorithm on a database of mammograms containing
only malignant masses and assume it works accurately?What
happens when the algorithm is faced with a normal mammo-
gram: will it mark a feature as false-positive? The final testing
regime concerns worst-case testing. What happens when an
algorithm processes images containing rare or unusual fea-
tures? Performance evaluation relies on the use of perfor-
mance indicators. Such indicators convey the qualities of an
algorithm. They are often loose characterizations used in the
specification of an algorithm, and in themselves are difficult
to measure. Typical performance indicators include [5]

(1) accuracy: how well the algorithm has performed with
respect to some reference;

(2) robustness: an algorithm’s capacity for tolerating vari-
ous conditions;

(3) sensitivity: how responsive an algorithm is to small
changes in features;

(4) adaptability: how the algorithm deals with variability
in images;

(5) reliability: the degree to which an algorithm, when re-
peated using the same stable data, yields the same re-
sult;

(6) efficiency: the practical viability of an algorithm (time
and space).

Finally there is the notion of the image database: which im-
ages should be selected to test an algorithm? This relates
to the diversity and complexity of the selected images, how
many databases are used in the selection process, and the sig-
nificance of the images to the segmentation task.

The goal of this special issue is to present an overview
of current methodologies related to performance evaluation,
performance metrics, and failure analysis of image process-
ing algorithms. The first seven papers deal with aspects of
performance evaluation in image segmentation, from met-
rics derived for video object relevance, to skew-tolerance
evaluation of page segmentation algorithms and evaluation
of edge detection. The last five papers deal with diverse areas
of performance evaluation. This includes a methodology for
designing experiments for performance evaluation and pa-
rameter tuning, the verification and validation of fingerprint
registration algorithms, and using performance measures
in feedback. As both consumer and commercial electronics
evolve, spanning applications as diverse as food processing,
biometrics, medicine, digital photography, and home the-
atres, it is increasingly essential to provide software which
is both accurate and robust. This requires a standardized
methodology for testing image processing algorithms, and
innovative means to tackle quantifying and automatically re-
solving issues relating to algorithm functioning. The assess-
ment and characterization of image processing algorithms
is an emerging field, which has been growing for the past
three decades. We hope that this special issue will direct more
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energy to the problem of performance evaluation, and revi-
talize interest in this burgeoning field.
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