18,870 research outputs found
Revival of quantum correlations without system-environment back-action
Revivals of quantum correlations have often been explained in terms of
back-action on quantum systems by their quantum environment(s). Here we
consider a system of two independently evolving qubits, each locally
interacting with a classical random external field. The environments of the
qubits are also independent, and there is no back-action on the qubits.
Nevertheless, entanglement, quantum discord and classical correlations between
the two qubits may revive in this model. We explain the revivals in terms of
correlations in a classical-quantum state of the environments and the qubits.
Although classical states cannot store entanglement on their own, they can play
a role in storing and reviving entanglement. It is important to know how the
absence of back-action, or modelling an environment as classical, affects the
kind of system time evolutions one is able to describe. We find a class of
global time evolutions where back-action is absent and for which there is no
loss of generality in modelling the environment as classical. Finally, we show
that the revivals can be connected with the increase of a parameter used to
quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
Experimental Realization of a One-way Quantum Computer Algorithm Solving Simon's Problem
We report an experimental demonstration of a one-way implementation of a
quantum algorithm solving Simon's Problem - a black box period-finding problem
which has an exponential gap between the classical and quantum runtime. Using
an all-optical setup and modifying the bases of single-qubit measurements on a
five-qubit cluster state, key representative functions of the logical two-qubit
version's black box can be queried and solved. To the best of our knowledge,
this work represents the first experimental realization of the quantum
algorithm solving Simon's Problem. The experimental results are in excellent
agreement with the theoretical model, demonstrating the successful performance
of the algorithm. With a view to scaling up to larger numbers of qubits, we
analyze the resource requirements for an n-qubit version. This work helps
highlight how one-way quantum computing provides a practical route to
experimentally investigating the quantum-classical gap in the query complexity
model.Comment: 9 pages, 5 figure
Dynamics of Entanglement and Bell-nonlocality for Two Stochastic Qubits with Dipole-Dipole Interaction
We have studied the analytical dynamics of Bell nonlocality as measured by
CHSH inequality and entanglement as measured by concurrence for two noisy
qubits that have dipole-dipole interaction. The nonlocal entanglement created
by the dipole-dipole interaction is found to be protected from sudden death for
certain initial states
Tripartite entanglement dynamics in a system of strongly driven qubits
We study the dynamics of tripartite entanglement in a system of two strongly
driven qubits individually coupled to a dissipative cavity. We aim at
explanation of the previously noted entanglement revival between two qubits in
this system. We show that the periods of entanglement loss correspond to the
strong tripartite entanglement between the qubits and the cavity and the
recovery has to do with an inverse process. We demonstrate that the overall
process of qubit-qubit entanglement loss is due to the second order coupling to
the external continuum which explains the exp[-g^2 t/2+g^2 k t^3/6+\cdot] for
of the entanglement loss reported previously.Comment: 9 pages, 5 figure
D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories
Systems of D3-branes at orientifold singularities can receive
non-perturbative D-brane instanton corrections, inducing field theory operators
in the 4d effective theory. In certain non-chiral examples, these systems have
been realized as the infrared endpoint of a Seiberg duality cascade, in which
the D-brane instanton effects arise from strong gauge theory dynamics. We
present the first UV duality cascade completion of chiral D3-brane theories, in
which the D-brane instantons arise from gauge theory dynamics. Chiral examples
are interesting because the instanton fermion zero mode sector is topologically
protected, and therefore lead to more robust setups. As an application of our
results, we provide a UV completion of certain D-brane orientifold systems
recently claimed to produce conformal field theories with conformal invariance
broken only by D-brane instantons.Comment: 50 pages, 32 figures. v2: version published in JHEP with references
adde
Entanglement Dynamics of Two Independent Cavity-Embedded Quantum Dots
We investigate the dynamical behavior of entanglement in a system made by two
solid-state emitters, as two quantum dots, embedded in two separated
micro-cavities. In these solid-state systems, in addition to the coupling with
the cavity mode, the emitter is coupled to a continuum of leaky modes providing
additional losses and it is also subject to a phonon-induced pure dephasing
mechanism. We model this physical configuration as a multipartite system
composed by two independent parts each containing a qubit embedded in a
single-mode cavity, exposed to cavity losses, spontaneous emission and pure
dephasing. We study the time evolution of entanglement of this multipartite
open system finally applying this theoretical framework to the case of
currently available solid-state quantum dots in micro-cavities.Comment: 10 pages, 4 figures, to appear in Topical Issue of Physica Scripta on
proceedings of CEWQO 201
Control of photon propagation via electromagnetically induced transparency in lossless media
We study the influence of a lossless material medium on the coherent storage
and quantum state transfer of a quantized probe light in an ensemble of
-type atoms. The medium is modeled as uniformly distributed two-level
atoms with same energy level spacing, coupling to a probe light. This coupled
system can be simplified to a collection of two-mode polaritons which couple to
one transition of the -type atoms. We show that, when the other
transition of -type atoms is controlled by a classical light, the
electromagnetically induced transparency can also occur for the polaritons. In
this case the coherent storage and quantum transfer for photon states are
achievable through the novel dark states with respect to the polaritons. By
calculating the corresponding dispersion relation, we find the ensemble of the
three-level atoms with -type transitions may serve as quantum memory
for it slows or even stops the light propagation through the mechanism of
electromagnetically induced transparency. the corresponding dispersion
relation, we find the ensemble of the three-level atoms with -type
transitions may serve as quantum memory for it slows or even stops the light
propagation through the mechanism of electromagnetically induced transparency.Comment: 10 pages, 5 figure
Large temperature dependence of the Casimir force at the metal-insulator transition
The dependence of the Casimir force on material properties is important for
both future applications and to gain further insight on its fundamental
aspects. Here we derive a general theory of the Casimir force for
low-conducting compounds, or poor metals. For distances in the micrometer
range, a large variety of such materials is described by universal equations
containing a few parameters: the effective plasma frequency, dissipation rate
of the free carriers, and electric permittivity in the infrared range. This
theory can also describe inhomogeneous composite materials containing small
regions with different conductivity. The Casimir force for mechanical systems
involving samples made with compounds that have a metal-insulator transition
shows an abrupt large temperature dependence of the Casimir force within the
transition region, where metallic and dielectric phases coexist.Comment: 23 pages, 9 figure
Entanglement dynamics of two independent qubits in environments with and without memory
A procedure to obtain the dynamics of independent qudits (-level
systems) each interacting with its own reservoir, for any arbitrary initial
state, is presented. This is then applied to study the dynamics of the
entanglement of two qubits, initially in an extended Werner-like mixed state
with each of them in a zero temperature non-Markovian environment. The
dependence of the entanglement dynamics on the purity and degree of
entanglement of the initial states and on the amount of non-Markovianity is
also given. This extends the previous work about non-Markovian effects on the
two-qubit entanglement dynamics for initial Bell-like states [B. Bellomo
\textit{et al.}, Phys. Rev. Lett. \textbf{99}, 160502 (2007)]. The effect of
temperature on the two-qubit entanglement dynamics in a Markovian environment
is finally obtained.Comment: 10 pages, 6 figure
Dietary habits and nutrition in rheumatoid arthritis: can diet influence disease development and clinical manifestations?
Rheumatoid arthritis (RA) is a systemic, autoimmune disease characterized by joint involvement, with progressive cartilage and bone destruction. Genetic and environmental factors determine RA susceptibility. In recent years, an increasing number of studies suggested that diet has a central role in disease risk and progression. Several nutrients, such as polyunsaturated fatty acids, present anti-inflammatory and antioxidant properties, featuring a protective role for RA development, while others such as red meat and salt have a harmful effect. Gut microbiota alteration and body composition modifications are indirect mechanisms of how diet influences RA onset and progression. Possible protective effects of some dietary patterns and supplements, such as the Mediterranean Diet (MD), vitamin D and probiotics, could be a possible future adjunctive therapy to standard RA treatment. Therefore, a healthy lifestyle and nutrition have to be encouraged in patients with RA
- …