11,764 research outputs found

    Spanning avalanches in the three-dimensional Gaussian Random Field Ising Model with metastable dynamics: field dependence and geometrical properties

    Get PDF
    Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several kinds of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.Comment: 16 pages, 17 figure

    Non-standard quantum so(3,2) and its contractions

    Full text link
    A full (triangular) quantum deformation of so(3,2) is presented by considering this algebra as the conformal algebra of the 2+1 dimensional Minkowskian spacetime. Non-relativistic contractions are analysed and used to obtain quantum Hopf structures for the conformal algebras of the 2+1 Galilean and Carroll spacetimes. Relations between the latter and the null-plane quantum Poincar\'e algebra are studied.Comment: 9 pages, LaTe

    Spectral singularities in PT-symmetric periodic finite-gap systems

    Full text link
    The origin of spectral singularities in finite-gap singly periodic PT-symmetric quantum systems is investigated. We show that they emerge from a limit of band-edge states in a doubly periodic finite gap system when the imaginary period tends to infinity. In this limit, the energy gaps are contracted and disappear, every pair of band states of the same periodicity at the edges of a gap coalesces and transforms into a singlet state in the continuum. As a result, these spectral singularities turn out to be analogous to those in the non-periodic systems, where they appear as zero-width resonances. Under the change of topology from a non-compact into a compact one, spectral singularities in the class of periodic systems we study are transformed into exceptional points. The specific degeneration related to the presence of finite number of spectral singularities and exceptional points is shown to be coherently reflected by a hidden, bosonized nonlinear supersymmetry.Comment: 16 pages, 3 figures; a difference between spectral singularities and exceptional points specified, the version to appear in PR

    Art+Politics

    Full text link
    For the exhibition Art + Politics, students worked closely with the holdings of Gettysburg College\u27s Special Collections and College Archives to curate an exhibition in Schmucker Art Gallery that engages with issues of public policy, activism, war, propaganda, and other critical socio-political themes. Each of the students worked diligently to contextualize the objects historically, politically, and art-historically. The art and artifacts presented in this exhibition reveal how various political events and social issues have been interpreted through various visual and printed materials, including posters, pins, illustrations, song sheets, as well as a Chinese shoe for bound feet. The students\u27 essays that follow demonstrate careful research and thoughtful reflection on the American Civil War, nineteenth-century politics, the First and Second World Wars, World\u27s Fairs, Dwight D. Eisenhower\u27s campaign, Vietnam-War era protests, and the Cultural Revolution in China. [excerpt]https://cupola.gettysburg.edu/artcatalogs/1009/thumbnail.jp

    Universal integrals for superintegrable systems on N-dimensional spaces of constant curvature

    Full text link
    An infinite family of classical superintegrable Hamiltonians defined on the N-dimensional spherical, Euclidean and hyperbolic spaces are shown to have a common set of (2N-3) functionally independent constants of the motion. Among them, two different subsets of N integrals in involution (including the Hamiltonian) can always be explicitly identified. As particular cases, we recover in a straightforward way most of the superintegrability properties of the Smorodinsky-Winternitz and generalized Kepler-Coulomb systems on spaces of constant curvature and we introduce as well new classes of (quasi-maximally) superintegrable potentials on these spaces. Results here presented are a consequence of the sl(2) Poisson coalgebra symmetry of all the Hamiltonians, together with an appropriate use of the phase spaces associated to Poincare and Beltrami coordinates.Comment: 12 page

    Dynamical System Analysis for Inflation with Dissipation

    Get PDF
    We examine the solutions of the equations of motion for an expanding Universe, taking into account the radiation of the inflaton field energy. We then analyze the question of the generality of inflationary solutions in this more general setting of a dissipative system. We find a surprisingly rich behavior for the solutions of the dynamical system of equations in the presence of dissipational effects. We also determine that a value of dissipation as small as 107H\sim 10^{-7} H can lead to a smooth exit from inflation to radiation.Comment: Plain LaTex, 21 pages, 8 eps figs (uses epsf), to be published in Phys. Rev.

    Strategies Employed by Community-Based Service Providers to Address HIV-Associated Neurocognitive Challenges: A Qualitative Study

    Get PDF
    Background: HIV-associated neurocognitive disorders and other causes of neurocognitive challenges experienced by people living with HIV (PLWH) persist as public health concerns in developed countries. Consequently, PLWH who experience neurocognitive challenges increasingly require social support and mental health services from community-based providers in the HIV sector. Methods: Thirty-three providers from 22 AIDS service organizations across Ontario, Canada, were interviewed to determine the strategies they used to support PLWH experiencing neurocognitive difficulties. Thematic analysis was conducted to determine key themes from the interview data. Results: Three types of strategies were identified: (a) intrapersonal, (b) interpersonal, and (c) organizational. Intrapersonal strategies involved learning and staying informed about causes of neurocognitive challenges. Interpersonal strategies included providing practical assistance, information, counseling, and/or referrals to PLWH. Organizational strategies included creating dedicated support groups for PLWH experiencing neurocognitive challenges, partnering with other organizations with services not available within their own organization, and advocating for greater access to services with expertise and experience working with PLWH. Conclusion: Through concerted efforts in the future, it is likely that empirically investigating, developing, and customizing these strategies specifically to address HIV-associated neurocognitive challenges will yield improved social support and mental health outcomes for PLWH

    High-throughput screening in larval zebrafish identifies novel potent sedative-hypnotics

    Full text link
    BACKGROUND: Many general anesthetics were discovered empirically, but primary screens to find new sedative-hypnotics in drug libraries have not used animals, limiting the types of drugs discovered. The authors hypothesized that a sedative-hypnotic screening approach using zebrafish larvae responses to sensory stimuli would perform comparably to standard assays, and efficiently identify new active compounds. METHODS: The authors developed a binary outcome photomotor response assay for zebrafish larvae using a computerized system that tracked individual motions of up to 96 animals simultaneously. The assay was validated against tadpole loss of righting reflexes, using sedative-hypnotics of widely varying potencies that affect various molecular targets. A total of 374 representative compounds from a larger library were screened in zebrafish larvae for hypnotic activity at 10 µM. Molecular mechanisms of hits were explored in anesthetic-sensitive ion channels using electrophysiology, or in zebrafish using a specific reversal agent. RESULTS: Zebrafish larvae assays required far less drug, time, and effort than tadpoles. In validation experiments, zebrafish and tadpole screening for hypnotic activity agreed 100% (n = 11; P = 0.002), and potencies were very similar (Pearson correlation, r > 0.999). Two reversible and potent sedative-hypnotics were discovered in the library subset. CMLD003237 (EC50, ~11 µM) weakly modulated γ-aminobutyric acid type A receptors and inhibited neuronal nicotinic receptors. CMLD006025 (EC50, ~13 µM) inhibited both N-methyl-D-aspartate and neuronal nicotinic receptors. CONCLUSIONS: Photomotor response assays in zebrafish larvae are a mechanism-independent platform for high-throughput screening to identify novel sedative-hypnotics. The variety of chemotypes producing hypnosis is likely much larger than currently known.This work was supported by grants from Shanghai Jiaotong University School of Medicine, Shanghai, China, and the Chinese Medical Association, Beijing, China (both to Dr. Yang). The Department of Anesthesia, Critical Care and Pain Medicine of Massachusetts General Hospital, Boston, Massachusetts, supported this work through a Research Scholars Award and an Innovation Grant (both to Dr. Forman). Contributions to this research from the Boston University Center for Molecular Discovery, Boston, Massachusetts (to Drs. Porco, Brown, Schaus, and Xu, and to Mr. Trilles), were supported by a grant from the National Institutes of Health, Bethesda, Maryland (grant No. R24 GM111625). (Shanghai Jiaotong University School of Medicine, Shanghai, China; Chinese Medical Association, Beijing, China; Department of Anesthesia, Critical Care and Pain Medicine of Massachusetts General Hospital, Boston, Massachusetts; R24 GM111625 - National Institutes of Health, Bethesda, Maryland)Accepted manuscript2019-09-0

    Segregation by thermal diffusion in granular shear flows

    Full text link
    Segregation by thermal diffusion of an intruder immersed in a sheared granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation is induced by the presence of a temperature gradient orthogonal to the shear flow plane and parallel to gravity. We show that, like in analogous systems without shear, the segregation criterion yields a transition between upwards segregation and downwards segregation. The form of the phase diagrams is illustrated in detail showing that they depend sensitively on the value of gravity relative to the thermal gradient. Two specific situations are considered: i) absence of gravity, and ii) homogeneous temperature. We find that both mechanisms (upwards and downwards segregation) are stronger and more clearly separated when compared with segregation criteria in systems without shear.Comment: 8 figures. To appear in J. Stat. Mec
    corecore