Segregation by thermal diffusion of an intruder immersed in a sheared
granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation
is induced by the presence of a temperature gradient orthogonal to the shear
flow plane and parallel to gravity. We show that, like in analogous systems
without shear, the segregation criterion yields a transition between upwards
segregation and downwards segregation. The form of the phase diagrams is
illustrated in detail showing that they depend sensitively on the value of
gravity relative to the thermal gradient. Two specific situations are
considered: i) absence of gravity, and ii) homogeneous temperature. We find
that both mechanisms (upwards and downwards segregation) are stronger and more
clearly separated when compared with segregation criteria in systems without
shear.Comment: 8 figures. To appear in J. Stat. Mec