398 research outputs found

    The Use of Remote Sensing Techniques for Monitoring and Characterization of Slope Instability

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Understanding changes in slope geometry and knowledge of underlying engineering properties of the rock mass are essential for the safe design of man-made slopes and to reduce the significant risks associated with slope failure. Recent advances in the geomatics industry have provided the capability to obtain accurate, fully geo-referenced three-dimensional datasets that can be subsequently interrogated to provide engineering-based solutions for monitoring of deformation processes, rock mass characterization and additional insight into any underlying failure mechanisms. Importantly, data can also be used to spatially locate and map geological features and provide displacement or deformation rate information relating to movement of critical sections or regions of a slope. This paper explores the benefits that can be obtained by incorporating different remote sensing techniques and conventional measurement devices to provide a comprehensive database required for development of an effective slope monitoring and risk management program. The integration of different techniques, such as high accuracy discrete point measurement at critical locations, which can be used to complement larger scale less dense three-dimensional survey will be explored. Case studies using a combination of aerial and terrestrial laser scanning, unmanned aerial vehicle and hand-held scanning devices will demonstrate their ability to provide spatial data for informing decision making processes and ensuring compliance with Regulations

    A combined field/remote sensing approach for characterizing landslide risk in coastal areas

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Understanding the key factors controlling slope failure mechanisms in coastal areas is the first and most important step for analyzing, reconstructing and predicting the scale, location and extent of future instability in rocky coastlines. Different failure mechanisms may be possible depending on the influence of the engineering properties of the rock mass (including the fracture network), the persistence and type of discontinuity and the relative aspect or orientation of the coastline. Using a section of the North Coast of Cornwall, UK, as an example we present a multi-disciplinary approach for characterizing landslide risk associated with coastal instabilities in a blocky rock mass. Remotely captured terrestrial and aerial LiDAR and photogrammetric data was interrogated using Geographic Information System (GIS) techniques to provide a framework for subsequent analysis, interpretation and validation. The remote sensing mapping data was used to define the rock mass discontinuity network of the area and to differentiate between major and minor geological structures controlling the evolution of the North Coast of Cornwall. Kinematic instability maps generated from aerial LiDAR data using GIS techniques and results from structural and engineering geological surveys are presented. With this method, it was possible to highlight the types of kinematic failure mechanism that may generate coastal landslides and highlight areas that are more susceptible to instability or increased risk of future instability. Multi-temporal aerial LiDAR data and orthophotos were also studied using GIS techniques to locate recent landslide failures, validate the results obtained from the kinematic instability maps through site observations and provide improved understanding of the factors controlling the coastal geomorphology. The approach adopted is not only useful for academic research, but also for local authorities and consultancy's when assessing the likely risks of coastal instability

    A case study integrating remote sensing and distinct element analysis to quarry slope stability assessment in the Monte Altissimo area, Italy

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.enggeo.2014.09.003. First available online 22 September 2014Over last decade geomatic techniques have been increasingly used for the geometrical characterization of rock slopes. Terrestrial laser scanning and digital terrestrial photogrammetry in particular are now frequently used in the characterization of joint surfaces and slope geometry. Although the use of these techniques for the structural characterization of slopes is widely documented, limited research has been undertaken to improve our understanding of the importance of the derived data quality in the construction of slope geometry imported into 3D numerical models. One of the most common problems encountered in the use of these techniques, especially in case of slopes with complex geometry, is the presence of occlusions. In this context, the aims of this paper are to describe how the integrated use of terrestrial laser scanning, digital terrestrial photogrammetry and topographic surveys can mitigate the influence of occlusions and how the slope geometry gained from these surveys can be important in slope stability analyses. For this purpose a case study in the Monte Altissimo area (Apuan Alps, Italy) will be presented. Several geomatic techniques were used for studying a slope overhanging the Granolesa quarry. Special emphasis will be given to the importance of using Total Station and Differential GPS surveys as tools for data fusion. Moreover, in order to validate this procedure, the accuracy and precision of the output were determined through comparison of 3D models derived from laser scanning and digital terrestrial photogrammetry.Furthermore, two different analyses with the three-dimensional distinct element code, 3DEC, were carried out in order to highlight the advantages and limitations of using data obtained from terrestrial remote sensing techniques as opposed to models based on topographic maps.The authors wish to thank the Tuscany Region which funded this research (Announcement 6744/2008 POR CREO 2007–2013). Moreover, we are extremely grateful to Henraux S.p.A., Prof. Pier Lorenzo Fantozzi (University of Siena), Geol. Sergio Mancini, Geol. Vinicio Lorenzoni and Ing. Matteo Lapini (Ingeo Systems s.r.l.) for their assistance and advices in this research

    Elevation modelling and palaeo-environmental interpretation in the Siwa area (Egypt): Application of SAR interferometry and radargrammetry to COSMO-SkyMed imagery

    Get PDF
    PublishedJournal Article© 2015 Elsevier B.V. Digital elevation models produced from COSMO-SkyMed imagery were used to delineate palaeo-drainage in a wide area surrounding the Siwa and Al-Jaghbub oases of the western Sahara Desert (Egypt and Libya).This new generation of synthetic aperture radar imagery is suitable for this purpose because of its high spatial resolution and capacity to penetrate dry surface sediments. Different techniques such as radar interferometry and radargrammetry were used to produce digital elevation models. These were assessed for accuracy and then combined to produce a single elevation model of the area. The resulting elevation model was used to support the geological study and palaeo-environmental interpretation of the area. It revealed buried features of the landscape, including inactive palaeo-drainage systems. Drainage features were extracted from the elevation model using geographical information systems; results were combined and assessed with respect to geological field data, as well as data from the literature. Previous studies in the area suggest that a wide river, probably the old Nile River, flowed into the Libyan palaeo-Sirte before the Late Messinian drawdown of the Mediterranean Sea. During the Late Messinian lowering of the sea the fluvial system changed shape and carved deep canyons throughout north-eastern Africa. The reported findings on the key Siwa area were used to precisely delineate the physiography of the modern drainage network and to confirm findings from our previous geological research in the area.We gratefully acknowledge Ruggero Matteucci and Johannes Pignatti (La Sapienza, University of Rome), Francesco Checchi (ENI S.p.A., IOEC), Filippo Bonciani and Debora Graziosi (University of Siena) for their collaboration. Research was supported by the ASI (Id 2262) in the framework of the COSMO-SkyMed Announcement of Opportunity project “Application of COSMO-SkyMed data for geological researches in Egypt and Libya”

    Identification and analysis of large paleo-landslides at Mount Burnaby, British Columbia

    Get PDF
    This is the author accepted manuscript. The final version is available from Geological Society of America via the DOI in this recordThis paper presents a multi-scale and multidisciplinary study of large, late Pleistocene or early Holocene slumps in Eocene sedimentary rocks at Mount Burnaby, just east of Vancouver, British Columbia (BC). Airborne LiDAR and field data were integrated into a GIS to understand the origin, kinematics, and subsequent history of the landslides. Products derived from the bare-earth LiDAR data include an engineering geomorphology map, shaded relief maps, and several LiDAR slope profiles. To understand the landslides better, we analyzed discontinuities and structural lineaments. The structure of the Eocene rocks underlying Mount Burnaby was compared with trends of local lineaments, and the shape of the coastline of Burrard Inlet and Indian Arm, and trends of regional faults and lineaments identified by previous researchers working in southwest BC. Two main joint systems likely played a key role in conditioning the north slope of Mount Burnaby for failure. The landslides probably happened during or soon after deglaciation of the area at the end of the Pleistocene on the steep north face of Mount Burnaby after a 200-m fall in relative sea level caused by glacio-isostatic uplift of the crust.We are grateful to BGC Engineering for its support of our research, and in particular acknowledge Alex Baumgard, who helped us secure LiDAR imagery and funding that allowed us to undertake the project. The research was supported with grants provided by Kinder Morgan Canada and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grants to ds and jjc)

    Application of an integrated geotechnical and topographic monitoring system in the Lorano marble quarry (Apuan Alps, Italy)

    Get PDF
    PublishedThis is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.geomorph.2015.04.009Accurate slope stability analysis is essential for human activity in high-risk geological contexts. This may, however, not be enough in the case of quarrying where the dynamic and evolving environment also requires effective monitoring. A well-designed monitoring system requires the acquisition of a huge dataset over time, improving knowledge of the study area and helping to refine prediction from stability analysis.This paper reports the implementation of an integrated monitoring system in a marble quarry in the Apuan Alps (Italy) and some of the results obtained. The equipment consists of a traditional geotechnical monitoring system (extensometers, crackmeters and clinometers) and two modern topographic monitoring systems (a terrestrial interferometer and a robotic total station). This work aims to provide in-depth knowledge of the large scale rock mass behaviour as a result of marble exploitation, thereby allowing continuous excavation. The results highlight the importance of integrating different monitoring systems.The present study was undertaken within the framework of the Italian National Research Project PRIN2009, funded by the Ministry of Education, Universities and Research, which involves the collaboration between the University of Siena, “La Sapienza” University of Rome, and USL1 of Massa and Carrara (Mining Engineering Operative Unit - Department of Prevention)

    Application of Remote Sensing Data for Evaluation of Rockfall Potential within a Quarry Slope

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordIn recent years data acquisition from remote sensing has become readily available to the quarry sector. This study demonstrates how such data may be used to evaluate and back analyse rockfall potential of a legacy slope in a blocky rock mass. Use of data obtained from several aerial LiDAR (Light Detection and Ranging) and photogrammetric campaigns taken over a number of years (2011 to date) provides evidence for potential rockfall evolution from a slope within an active quarry operation in Cornwall, UK. Further investigation, through analysis of point cloud data obtained from terrestrial laser scanning, was undertaken to characterise the orientation of discontinuities present within the rock slope. Aerial and terrestrial LiDAR data were subsequently used for kinematic analysis, production of surface topography models and rockfall trajectory analyses using both 2D and 3D numerical simulations. The results of an Unmanned Aerial Vehicle (UAV)-based 3D photogrammetric analysis enabled the reconstruction of high resolution topography, allowing one to not only determine geometrical properties of the slope surface and geomechanical characterisation but provide data for validation of numerical simulations. The analysis undertaken shows the effectiveness of the existing rockfall barrier, while demonstrating how photogrammetric data can be used to inform back analyses of the underlying failure mechanism and investigate potential runout

    Investigation of landslide failure mechanisms adjacent to lignite mining operations in North Bohemia (Czech Republic) through a limit equilibrium/finite element modelling approach

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Understanding the impact of data uncertainty is a fundamental part of ensuring safe design of manmade excavations. Although good levels of knowledge are achievable from field investigations and experience, a natural geological environment is subject to intrinsic variability that may compromise the correct prediction of the system response to the perturbations caused by mining, with direct consequences for the stability and safety of the operations. Different types of geoscientific evidence, including geological, geomorphic, geotechnical, geomatics, and geophysical data have been used to develop and perform two-dimensional Limit Equilibrium and Finite Element Method stability analyses of a lignite open-pit mine in North Bohemia (Czech Republic) affected by recent landslides. A deterministic-probabilistic approach was adopted to investigate the effect of uncertainty of the input parameters on model response. The key factors affecting the system response were identified by specific Limit Equilibrium sensitivity analyses and studied in further detail by Finite Element probabilistic analyses and the results were compared. The work highlights that complementary use of both approaches can be recommended for routine checks of model response and interpretation of the associated results. Such an approach allows a reduction of system uncertainty and provides an improved understanding of the landslides under study. Importantly, two separate failure mechanisms have been identified from the analyses performed and verified through comparisons with inclinometer data and field observations. The results confirm that the water table level and material input parameters have the greatest influence on the stability of the slope.This work was supported by the Research Fund for Coal and Steel of the European Union [grant number 752504]

    A robust sar speckle tracking workflow for measuring and interpreting the 3d surface displacement of landslides

    Get PDF
    We present a workflow for investigating large, slow‐moving landslides which combines the synthetic aperture radar (SAR) technique, GIS post‐processing, and airborne laser scanning (ALS), and apply it to Fels landslide in Alaska, US. First, we exploit a speckle tracking (ST) approach to derive the easting, northing, and vertical components of the displacement vectors across the rock slope for two five‐year windows, 2010–2015 and 2015–2020. Then, we perform post‐processing in a GIS environment to derive displacement magnitude, trend, and plunge maps of the landslide area. Finally, we compare the ST‐derived displacement data with structural lineament maps and profiles extracted from the ALS dataset. Relying on remotely sensed data, we estimate that the thickness of the slide mass is more than 100 m and displacements occur through a combination of slumping at the toe and planar sliding in the central and upper slope. Our approach provides information and interpretations that can assist in optimizing and planning fieldwork activities and site investigations at landslides in remote locations

    Periodontitis and bone metabolism

    Get PDF
    corecore