207 research outputs found

    Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis

    Get PDF
    Metabolic changes are associated with cancer, but whether they are just bystander effects of deregulated oncogenic signaling pathways or characterize early phases of tumorigenesis remains unclear. Here we show in a rat model of hepatocarcinogenesis that early preneoplastic foci and nodules that progress towards hepatocellular carcinoma (HCC) are characterized both by inhibition of oxidative phosphorylation (OXPHOS) and by enhanced glucose utilization to fuel the pentose phosphate pathway (PPP). These changes respectively require increased expression of the mitochondrial chaperone TRAP1 and of the transcription factor NRF2 that induces the expression of the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD), following miR-1 inhibition. Such metabolic rewiring exclusively identifies a subset of aggressive cytokeratin-19 positive preneoplastic hepatocytes and not slowly growing lesions. No such metabolic changes were observed during non-neoplastic liver regeneration occurring after two/third partial hepatectomy. TRAP1 silencing inhibited the colony forming ability of HCC cells while NRF2 silencing decreased G6PD expression and concomitantly increased miR-1; conversely, transfection with miR-1 mimic abolished G6PD expression. Finally, in human HCC patients increased G6PD expression levels correlates with grading, metastasis and poor prognosis. Our results demonstrate that the metabolic deregulation orchestrated by TRAP1 and NRF2 is an early event restricted to the more aggressive preneoplastic lesions

    Triplet vs doublet lenalidomide-containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma

    Get PDF
    Lenalidomide-dexamethasone improved outcome in newly diagnosed elderly multiple myeloma patients. We randomly assigned 662 patients who were age \u202165 years or transplantation-ineligible to receive induction with melphalan-prednisone-lenalidomide (MPR) or cyclophosphamide-prednisone-lenalidomide (CPR) or lenalidomide plus lowdose dexamethasone (Rd). The primary end point was progression-free survival (PFS) in triplet (MPR and CPR) vs doublet (Rd) lenalidomide-containing regimens. After a median follow-up of 39 months, the medianPFSwas22 months for the triplet combinations and 21 months for the doublet (P 5 .284). The median overall survival (OS) was not reached in either arms, and the 4-year OS was 67% for the triplet and 58% for the doublet arms (P 5 .709). By considering the 3 treatment arms separately, no difference in outcome was detected among MPR, CPR, and Rd. The most common grade \u20213 toxicity was neutropenia: 64% in MPR, 29% in CPR, and 25% in Rd patients (P < .0001). Grade \u20213 nonhematologic toxicities were similar among arms and were mainly infections (6.5% to 11%), constitutional (3.5% to 9.5%), and cardiac (4.5% to 6%), with no difference among the arms. In conclusion, in the overall population, the alkylator-containing tripletsMPRandCPRwere not superior to the alkylator-free doublet Rd, which was associated with lower toxicit

    Creative argumentation : when and why people commit the metaphoric fallacy

    Get PDF
    This article aims to understand when and why people accept fallacious arguments featuring metaphors (metaphoric fallacy) as sound arguments. Two experiments were designed to investigate, respectively, when and why participants fell into the metaphoric fallacy. In the first experiment, participants were provided with a series of syllogisms, presented in natural language, containing in their first premise either a lexically ambiguous, literal middle term or a metaphorical middle term, i.e. the term that “bridges” the first premise with the second premise, and ending with a true, false or plausible conclusion. For each argument they were asked to evaluate whether the conclusion followed from the premises. Results show that the metaphoric fallacy is harder to detect in case of arguments with plausible conclusion with a conventional metaphor rather than a novel metaphor as middle term. The second experiment investigated why participants considered the metaphoric fallacy with plausible conclusion as a strong argument. Results suggest that participants’ belief in the conclusion of the argument, independent from the premises, is a predictor for committing the metaphoric fallacy. We argue that a creative search for alternative reasons justifies participants’ falling into the metaphoric fallacy, especially when the framing effect of a metaphor covertly influences the overall reading of the argument. Thus, far from being a source of irrationality, metaphors might elicit a different style of reasoning in argumentation, forcing participants to find an alternative interpretation of the premises that guarantees the believed conclusion. In this process, conventional metaphors are revitalized and extended through the second premise to the conclusion, thereby entailing an overall metaphorical reading of the argument

    How the Heart Was Involved in COVID-19 during the First Pandemic Phase: A Review

    Get PDF
    Coronavirus disease (COVID-19) was first observed in Wuhan, Hubei Province (China) in December 2019, resulting in an acute respiratory syndrome. Only later was COVID-19 considered a public health emergency of international concern and, on 11 March 2020, the WHO classified it as pandemic. Despite being a respiratory virus, the clinical manifestations are also characterized by cardiological involvement, especially in patients suffering from previous comorbidities such as hypertension and diabetes mellitus, its complications being potentially serious or fatal. Despite the efforts made by the scientific community to identify pathophysiological mechanisms, they still remain unclear. A fundamental role is played by the angiotensin 2 converting enzyme, known for its effects at the cardiovascular level and for its involvement in COVID-19 pathogenesis. The goal of this paper was to highlight the mechanisms and knowledge related to cardiovascular involvement during the first pandemic phase, as well as to emphasize the main cardiological complications in infected patients

    Interstitial lung abnormalities: new insights between theory and clinical practice

    Get PDF
    : Interstitial lung abnormalities (ILAs) represent radiologic abnormalities incidentally detected on chest computed tomography (CT) examination, potentially related to interstitial lung diseases (ILD). Numerous studies have demonstrated that ILAs are associated with increased risk of progression toward pulmonary fibrosis and mortality. Some radiological patterns have been proven to be at a higher risk of progression. In this setting, the role of radiologists in reporting these interstitial abnormalities is critical. This review aims to discuss the most recent advancements in understanding this radiological entity and the open issues that still prevent the translation from theory to practice, emphasizing the importance of ILA recognition and adequately reporting in clinical practice

    Browsing Isolated Population Data

    Get PDF
    BACKGROUND: In our studies of genetically isolated populations in a remote mountain area in the center of Sardinia (Italy), we found that 80–85% of the inhabitants of each village belong to a single huge pedigree with families strictly connected to each other through hundreds of loops. Moreover, intermarriages between villages join pedigrees of different villages through links that make family trees even more complicated. Unfortunately, none of the commonly used pedigree drawing tools are able to draw the complete pedigree, whereas it is commonly accepted that the visual representation of families is very important as it helps researchers in identifying clusters of inherited traits and genotypes. We had a representation issue that compels researchers to work with subsets extracted from the overall genealogy, causing a serious loss of information on familiar relationships. To visually explore such complex pedigrees, we developed PedNavigator, a browser for genealogical databases properly suited for genetic studies. RESULTS: The PedNavigator is useful for genealogical research due to its capacity to represent family relations between persons and to make a visual verification of the links during family history reconstruction. As for genetic studies, it is helpful to follow propagation of a specific set of genetic markers (haplotype), or to select people for linkage analysis, showing relations between various branch of a family tree of affected subjects. AVAILABILITY: PedNavigator is an application integrated into a Framework designed to handle data for human genetic studies based on the Oracle platform. To allow the use of PedNavigator also to people not owning the same required informatics infrastructure or systems, we developed PedNavigator Lite with mainly the same features of the integrated one, based on MySQL database server. This version is free for academic users, and it is available for download from our sit

    A fully automated micro‑CT deep learning approach for precision preclinical investigation of lung fibrosis progression and response to therapy

    Get PDF
    : Micro-computed tomography (µCT)-based imaging plays a key role in monitoring disease progression and response to candidate drugs in various animal models of human disease, but manual image processing is still highly time-consuming and prone to operator bias. Focusing on an established mouse model of bleomycin (BLM)-induced lung fibrosis we document, here, the ability of a fully automated deep-learning (DL)-based model to improve and speed-up lung segmentation and the precise measurement of morphological and functional biomarkers in both the whole lung and in individual lobes. µCT-DL whose results were overall highly consistent with those of more conventional, especially histological, analyses, allowed to cut down by approximately 45-fold the time required to analyze the entire dataset and to longitudinally follow fibrosis evolution and response to the human-use-approved drug Nintedanib, using both inspiratory and expiratory μCT. Particularly significant advantages of this µCT-DL approach, are: (i) its reduced experimental variability, due to the fact that each animal acts as its own control and the measured, operator bias-free biomarkers can be quantitatively compared across experiments; (ii) its ability to monitor longitudinally the spatial distribution of fibrotic lesions, thus eliminating potential confounding effects associated with the more severe fibrosis observed in the apical region of the left lung and the compensatory effects taking place in the right lung; (iii) the animal sparing afforded by its non-invasive nature and high reliability; and (iv) the fact that it can be integrated into different drug discovery pipelines with a substantial increase in both the speed and robustness of the evaluation of new candidate drugs. The µCT-DL approach thus lends itself as a powerful new tool for the precision preclinical monitoring of BLM-induced lung fibrosis and other disease models as well. Its ease of operation and use of standard imaging instrumentation make it easily transferable to other laboratories and to other experimental settings, including clinical diagnostic applications
    corecore