1,856 research outputs found

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    Hubbard model as an approximation to the entanglement in nanostructures

    Get PDF
    We investigate how well the one-dimensional Hubbard model describes the entanglement of particles trapped in a string of quantum wells. We calculate the average single-site entanglement for two particles interacting via a contact interaction and consider the effect of varying the interaction strength and the interwell distance. We compare the results with the ones obtained within the one-dimensional Hubbard model with on-site interaction. We suggest an upper bound for the average single-site entanglement for two electrons in M wells and discuss analytical limits for very large repulsive and attractive interactions. We investigate how the interplay between interaction and potential shape in the quantum-well system dictates the position and size of the entanglement maxima and the agreement with the theoretical limits. Finally, we calculate the spatial entanglement for the quantum-well system and compare it to its average single-site entanglement

    Direct measurement of finite-time disentanglement induced by a reservoir

    Full text link
    We propose a method for directly probing the dynamics of disentanglement of an initial two-qubit entangled state, under the action of a reservoir. We show that it is possible to detect disentanglement, for experimentally realizable examples of decaying systems, through the measurement of a single observable, which is invariant throughout the decay. The systems under consideration may lead to either finite-time or asymptotic disentanglement. A general prescription for measuring this observable, which yields an operational meaning to entanglement measures, is proposed, and exemplified for cavity quantum electrodynamics and trapped ions.Comment: 4 pages, 2 figure

    Ion backflow studies with a triple-GEM stack with increasing hole pitch

    Full text link
    Gas Electron Multipliers have undergone a very consistent development since their invention in 1997. Their production procedures have been tuned in such a way that nowadays it is possible to produce foils with areas of the order of the square meter that can operate at a reasonable gain, uniform over large areas and with a good stability in what concerns electrical discharges. For the third run of LHC, they will be included in the CMS and ALICE experiments after significant upgrades of the detectors, confirming that these structures are suitable for very large experiments. In the special case of Time Projection Chambers, the ion backflow and the energy resolution are sensitive issues that must be addressed and the GEM has shown to be able to deal with both of them. In this work, a stack of three GEMs with different pitches has been studied as a possible future approach for ion-backflow suppression to be used in TPCs and other detection concepts. With this approach, an ion backflow of 1 % with an energy resolution of 12 % at 5.9 keV has been achieved with the detector operating in an Ar/CO2 (90/10) mixture at a gain of ~ 2000.Comment: 15 pages, 11 figure

    Construção de bases definicionais para a terminologia da Geoinformação Espacial na Empresa Brasileira de Pesquisa Agropecuária (Embrapa).

    Get PDF
    Tendo em vista esta contextualização da área de conhecimento estudada, apresentam-se aqui os resultados parciais da pesquisa em andamento que tem como objetivo a elaboração de uma terminologia para a Geoinformação Espacial na Empresa Brasileira de Pesquisa Agropecuária (Embrapa)

    Controlling the dynamics of a coupled atom-cavity system by pure dephasing : basics and potential applications in nanophotonics

    Full text link
    The influence of pure dephasing on the dynamics of the coupling between a two-level atom and a cavity mode is systematically addressed. We have derived an effective atom-cavity coupling rate that is shown to be a key parameter in the physics of the problem, allowing to generalize the known expression for the Purcell factor to the case of broad emitters, and to define strategies to optimize the performances of broad emitters-based single photon sources. Moreover, pure dephasing is shown to be able to restore lasing in presence of detuning, a further demonstration that decoherence can be seen as a fundamental resource in solid-state cavity quantum electrodynamics, offering appealing perspectives in the context of advanced nano-photonic devices.Comment: 10 pages, 7 figure

    Simulation of the hydrogen ground state in Stochastic Electrodynamics

    Get PDF
    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy 12ω\frac{1}{2}\hbar \omega in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham -- Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modelings the atom ionises at longer times.Comment: 20 pages, 9 figures. Published version, minor change

    Acceleration from M theory and Fine-tuning

    Full text link
    The compactification of M theory with time dependent hyperbolic internal space gives an effective scalar field with exponential potential which provides a transient acceleration in Einstein frame in four dimensions. Ordinary matter and radiation are present in addition to the scalar field coming from compactification. We find that we have to fine-tune the initial conditions of the scalar field so that our Universe experiences acceleration now. During the evolution of our Universe, the volume of the internal space increases about 12 times. The time variation of the internal space results in a large time variation of the fine structure constant which violates the observational constraint on the variation of the fine structure constant. The large variation of the fine structure constant is a generic feature of transient acceleration models.Comment: 9 pages, 3 figures, use iopart, v2; references updated, accepted for publication in Class. Quantum Gra

    Accessibility of physical states and non-uniqueness of entanglement measure

    Full text link
    Ordering physical states is the key to quantifying some physical property of the states uniquely. Bipartite pure entangled states are totally ordered under local operations and classical communication (LOCC) in the asymptotic limit and uniquely quantified by the well-known entropy of entanglement. However, we show that mixed entangled states are partially ordered under LOCC even in the asymptotic limit. Therefore, non-uniqueness of entanglement measure is understood on the basis of an operational notion of asymptotic convertibility.Comment: 8 pages, 1 figure. v2: main result unchanged but presentation extensively changed. v3: figure added, minor correction

    Geometrically induced singular behavior of entanglement

    Get PDF
    We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically it is shown that singular points at the border of the set of unentangled states appear as singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.Comment: v2: 4 pags, 4 figs. A discussion before the proof of Proposition 1 and tomographic results were included, Propostion 2 was removed and the references were fixe
    corecore