146 research outputs found

    Fabrication of FeSi and Fe3Si compounds by electron beam induced mixing of [Fe/Si]2 and [Fe3/Si]2 multilayers grown by focused electron beam induced deposition

    Full text link
    Fe-Si binary compounds have been fabricated by focused electron beam induced deposition by the alternating use of iron pentacarbonyl, Fe(CO)5, and neopentasilane, Si5H12 as precursor gases. The fabrication procedure consisted in preparing multilayer structures which were treated by low-energy electron irradiation and annealing to induce atomic species intermixing. In this way we are able to fabricate FeSi and Fe3Si binary compounds from [Fe=Si]2 and [Fe3=Si]2 multilayers, as shown by transmission electron microscopy investigations. This fabrication procedure is useful to obtain nanostructured binary alloys from precursors which compete for adsorption sites during growth and, therefore, cannot be used simultaneously

    Alignment of electron optical beam shaping elements using a convolutional neural network

    Get PDF
    A convolutional neural network is used to align an orbital angular momentum sorter in a transmission electron microscope. The method is demonstrated using simulations and experiments. As a result of its accuracy and speed, it offers the possibility of real-time tuning of other electron optical devices and electron beam shaping configurations

    Image charge screening: a new approach to enhance magnetic ordering temperatures

    Full text link
    We have tested the concept of image charge screening as a new approach to enhance magnetic ordering temperatures and superexchange interactions in ultra thin films. Using a 3 monolayer NiO(100) film grown on Ag(100) and an identically thin film on MgO(100) as model systems, we observed that the Neel temperature of the NiO film on the highly polarizable metal substrate is 390 K while that of the film on the poorly polarizable insulator substrate is below 40 K. This demonstrates that screening by highly polarizable media may point to a practical way towards designing strongly correlated oxide nanostructures with greatly improved magnetic properties.Comment: 5 pages, 4 figure

    Effect of Mo content on the microstructure and mechanical properties of CoCrFeNiMox HEA coatings deposited by high power impulse magnetron sputtering

    Get PDF
    In this work, CoCrFeNiMox high entropy alloy (HEA) films were deposited by High Power Impulse Magnetron Sputtering (HiPIMS) using pure Mo and equiatomic CoCrFeNi targets. The effect of Mo content on the microstructure, residual stress state, and mechanical properties of the films was investigated in the range of 0–20 at.%. All films exhibited a columnar growth morphology and a high density of planar defects. Increasing the Mo content promoted the formation of a fine-grained structure and induced the transformation from a single face-centered cubic (FCC) phase to a mixture of FCC and body-centered cubic (BCC) phases. All produced films displayed a compressive residual stress state regardless of the Mo concentration. In terms of mechanical properties, the hardness of the films increased with increasing Mo content due to solid solution and grain boundary strengthening, along with the formation of a hard BCC phase. On the other hand, the elastic modulus decreased, likely due to the formation of an amorphous phase at higher Mo concentrations

    One-Dimensional “Ghost Imaging” in Electron Microscopy of Inelastically Scattered Electrons

    Get PDF
    Entanglement and correlation are at the basis of quantum mechanics and have been used in optics to create a framework for “ghost imaging”. We propose that a similar scheme can be used in an electron microscope to exploit the correlation of electrons with the coincident detection of collective mode excitations in a sample. In this way, an image of the sample can be formed on an electron camera even if electrons never illuminated the region of interest directly. This concept, which can be regarded as the inverse of photon-induced near-field electron microscopy, can be used to probe delicate molecules with a resolution that is beyond the wavelength of the collective mode

    Theoretical and practical aspects of the design and production of synthetic holograms for transmission electron microscopy

    Get PDF
    Beam shaping-the ability to engineer the phase and the amplitude of massive and massless particles-has long interested scientists working on communication, imaging, and the foundations of quantum mechanics. In light optics, the shaping of electromagnetic waves (photons) can be achieved using techniques that include, but are not limited to, direct manipulation of the beam source (as in X-ray free electron lasers and synchrotrons), deformable mirrors, spatial light modulators, mode converters, and holograms. The recent introduction of holographic masks for electrons provides new possibilities for electron beam shaping. Their fabrication has been made possible by advances in micrometric and nanometric device production using lithography and focused on ion beam patterning. This article provides a tutorial on the generation, production, and analysis of synthetic holograms for transmission electron microscopy. It begins with an introduction to synthetic holograms, outlining why they are useful for beam shaping to study material properties. It then focuses on the fabrication of the required devices from theoretical and experimental perspectives, with examples taken from both simulations and experimental results. Applications of synthetic electron holograms as aberration correctors, electron vortex generators, and spatial mode sorters are then presented

    Thermal wave measurements in ion-implanted silicon

    No full text
    Thermoacoustic techniques are becoming popular in both laboratory and industrial environments because they provide a very sensitive method for investigating the properties of solids and liquids, through their effectiveness in absorbing an "exciting" radiation. In this paper we report some application of thermal wave measurements to silicon science and correlate the thermal wave response to the properties of the sample under investigation, obtained with techniques such as secondary ion mass spectrometry, transmission electron microscopy and carrier depth profiling. © 1990

    Determination of bulk mismatch values in heterostructures by TEM/CBED

    No full text
    Using isotropic elasticity theory it is possible to determine the bulk mismatch in thinned, cross-sectioned heterostructures, where a relaxation occurs along the thinning direction. This is accomplished by measuring, in the central disk of a single Convergent Beam Electron Diffraction (CBED) pattern, the position of the High Order Laue Zone lines, which are sensitive to lattice parameters along different crystallographic directions. The results obtained in both uniform and graded Si1-xGex/Si heterostructures are in good agreement with bulk values deduced from independent techniques
    • …
    corecore