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A B S T R A C T   

A convolutional neural network is used to align an orbital angular momentum sorter in a transmission electron 
microscope. The method is demonstrated using simulations and experiments. As a result of its accuracy and 
speed, it offers the possibility of real-time tuning of other electron optical devices and electron beam shaping 
configurations.   

1. Introduction 

The evolution of resolution and optics in electron microscopy has 
involved major steps, including the introduction of spherical aberration 
correction [1,2], chromatic aberration correction [3,4] and mono
chromators [5–8]. Each increase in complexity has resulted in an in
crease in the difficulty of instrument control. Although the basic concept 
of the operation of each lens and optical element is known, the overall 
behaviour of the microscope is not predictable in detail and the quality 
of microscope performance is limited by the skill of the user. 

One of the most significant recent developments in electron micro
scopy is electron beam shaping through the use of material-based ho
lograms [9–12] and, more recently, electron optical components based 
on microelectromechanical systems technology [13–15]. Electron beam 
shaping can be used to generate vortex beams [16,17], non-diffracting 
beams [18], compact aberration correctors [19–21] and analysers of 
quantum states by means of unitary wave transformations [22]. These 
ideas are often inspired by light optics, where their implementation is 
easier. Both standard electron beam control and new ideas of electron 
beam shaping require more automated control of the electron column, 
both to increase the speed and reproducibility of electron optical 
alignment and to reduce demand on the operator. 

In visible light optics, every element can be positioned manually and 
aligned separately, with, for example, adaptive optics providing 

improvements in telescope optics [23]. In electron microscopy, hard
ware aberration correctors that are formed from high order multipoles 
permit the limitations of cylindrically symmetric lenses to be circum
vented. They are presently controlled using semi-analytical models 
[24–27], which are based on parameterized aberrations and on the ef
fect of each multipole excitation. However, such an approach cannot 
easily be adapted to more unconventional optics, such as electron beam 
shaping. Moreover, a general approach is required to control a full 
microscope. 

Here, we use a convolutional neural network (CNN) [28,29], which 
is implemented in many other scientific disciplines [30–34] and is able 
to learn from a large set of training images to extrapolate a detail or the 
value of a parameter tagged to each image [35,36]. It is able to treat 
complex parametrical spaces, if enough high-quality training data are 
available for the learning algorithm. It is also often more robust to noise 
than an analytical model. 

We are motivated by the specific case of an orbital angular mo
mentum (OAM) sorter [37–39], which makes use of electron beam 
shaping to measure an electron beam’s component of OAM in the 
propagation direction by decoupling the azimuthal and radial degrees of 
freedom. Apart from diffraction, it provides the first complete example 
of a lossless unitary base change that “diagonalizes” a quantum operator 
using wave manipulation. Recent research [40] suggests that it could be 
the first of many useful wave transformations to revolutionize the 
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concept of measurement in electron microscopy. The implementation of 
an OAM sorter requires precise alignment and control of two optical 
phase elements. No simple analytical model can be fitted to an OAM 
spectrum to measure all of the available control parameters. In this 
paper, a quantitative comparison with experiments is used to show that 
a CNN can be used to evaluate the misalignment of an OAM sorter, in 
anticipation of integrating it with the microscope control system to 
perform automated tuning in the future. 

2. Methods 

2.1. Sorter misalignment 

An OAM sorter comprises two phase elements, which can each be 
based on synthetic holography or electrostatic potentials and used to 
spatially separate the different OAM components of an electron beam. In 
the stationary phase approximation, the first element imparts a coor
dinate transformation from Cartesian to log-polar coordinates to an 
electron wave. The transformation phase is removed by exact phase 
compensation by second phase elements positioned in the Fraunhofer 
plane of the first element. The working principle is shown schematically 
in Fig. 1. 

In the most natural implementation of an OAM sorter, the micro
scope is operated in scanning TEM (STEM) mode, with a small electron 
probe formed in the sample plane (Fig. 1a). The electron beam is dif
fracted by the objective lens (Fig. 1b) into a disk in its back focal plane, 
where the first element of the sorter is located (Fig. 1c). The phase shift 
associated with the first element (S1) can be described mathematically 
by the expression 

φS1(x, y) =
ks
f

(

ytan− 1y
x
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where k is the electron wavevector, f is the focal distance between the 
two sorter elements and s and L are scaling parameters. Element S1 can 
be fabricated using a long electrically-charged conductive needle [22]. 
The scaling parameters s and L depend on the electrical bias applied to 
the needle and on its length, respectively [41]. Element S1 introduces a 
conformal mapping from Cartesian to log-polar coordinates (Figs 1c, d), 
which is concluded in the selected area aperture plane (Fig. 1f). Element 
S2 is located in this plane, which is conjugate to the sample plane. In its 
experimental realization, it comprises a periodic array of conductive 
needles, which are charged positively and negatively in an alternate 
fashion. The phase shift introduced by element S2 can be written in the 
form 

φS2(u, v) = −
ksL
f

e− u
scos

(v
s

)
(2)  

where u and v are coordinates in the diffraction plane. This phase shift is 
designed to match and compensate (Fig. 1g) the phase shift of the 
electron beam, in order to prevent further S1-based evolution of the 
electron beam shape upon propagation. A second lens (Fig. 1h) collapses 
the electron beam to a rod (Fig. 1i), whose position with respect to the 
optical axis is proportional to the OAM carried by the electron beam. If 
several OAM components are present, then each component is focused to 

a different position, thereby generating a spectrum. 
As a result of the stationary phase condition, the phase shifts of el

ements S1 and S2 vary rapidly. In the S2 plane, a phase change of Δϕ =
2π typically occurs over less than 200 nm (under the conditions used in 
the present work). Therefore, precise alignment of the elements is 
important to obtain complete phase compensation. This compensation 
involves controlling rotation, size, focus and translation. 

Fig. 2 shows the influence of different parameters on the resolution 
of an OAM spectrum. The three columns show electron optical simula
tions of the primary misalignments between the diffraction of S1 (left 
column) and S2 (centre column) and their effect on an OAM spectrum 
(right column). The simulations are performed for a 300 kV electron 
beam defined by a 2 mrad hard aperture traveling in vacuum. The sorter 
parameters are s = 3 μrad and L = 40 μm. The algorithm that was used 
for the calculations is described below. The first row corresponds to the 
ideal situation, in which the phase of the beam is matched perfectly and 
compensated by the phase of element S2 (centre column). The OAM 
spectrum then only features a narrow spot at l = 0 (right column). In 
the second row (Fig. 2b), the defocus of the objective lens (df/f) is 
considered. The conformal mapping is then not completed in the plane 
in which element S2 is located. As a result, residual curvature is present 
in the beam and the phase pattern is distorted. The main effect of this 
aberration is broadening of the beam in the radial direction (Pr), which 
depends on the sign of the defocus. The OAM resolution is preserved 
instead, meaning that a moderate amount of defocus can be tolerated if 
only the OAM component is of interest [42–46]. 

A more prominent source of resolution loss is the size mismatch (SM) 
between the beam and element S2 (Fig. 2c). This aberration appears 
when the electron beam scale in the S2 plane is larger (smaller) than the 
scale dictated by the periodicity of element S2. Since the periodicity of 
S2 is bound to the physical distance between the electrodes and cannot 
be modified, correction for this aberration entails changing the beam 
size. The size of the electron beam in the S2 plane, in turn, depends on 
the product of the focal distance between the two planes (another 
physical parameter that cannot be changed) and the excitation param
eter s of element S1 (Eq. (1)). An optimal potential then needs to be 
applied to the main electrode of element S1. A deviation from this value 
introduces an SM aberration to the OAM spectrum. The main effect of 
the SM aberration is the introduction of background fringes and a loss of 
OAM resolution. A difference of a few% is sufficient to produce the effect 
reported in the right column of Fig. 2c. 

The third effect is associated with a rigid shift of the electron beam in 
one or both directions (shx and shy) with respect to element S2. The 
primary effect of this misalignment is an asymmetrical background 
fringe pattern. A misalignment of a few nm, which is small compared to 
the periodicity of element S2 (typically 20 μm), is sufficient to reduce the 
OAM resolution. Fortunately, TEMs offer high precision control over the 
beam position and this aberration can be fixed easily, even manually. 

The last row reports the effect of relative rotation (i.e., orientation 
mismatch β) of the electron beam with respect to element S2. 

In addition to these effects, which are inherent to S1/S2 alignment, 
the defocus of the diffraction lens located after element S2 was consid
ered. Its effect is to modify the shape of the OAM spectrum. All other 
aberrations of the microscope, in particular astigmatism in different 
planes and coma, were neglected. At this stage, we assume that precise 

Fig. 1. Schematic diagram showing the evolution of an electron beam through an orbital angular momentum sorter. See text for details.  
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alignment is carried out before starting an experiment and is not affected 
by a change of the sorter parameters. Aberrations of the main lenses can 
be included in the training of the CNN by adding more adjustable pa
rameters. However, special care is devoted to the finite lateral coherence 
of the beam, as described below. 

Even for a perfectly aligned OAM sorter, other issues can affect final 
experimental spectra. In particular, if the electron beam is not centred 

with respect to the optical axis in the sample plane or S1 plane, the OAM 
spectrum will be broadened. This is a normally unwanted effect that 
arises from the physical definition of OAM. The OAM operator, like its 
classical counterpart, is related to the specific choice of a pole, which 
corresponds here to the optical axis. 

Fig. 2. Primary misalignment conditions be
tween the diffraction of S1 (left column) and S2 
(centre column) and their effects on an OAM 
spectrum (right column). a) Perfect condition, 
with the beam and S2 aligned. b) Effect of 
objective lens defocus (df/f). c) Effect of size 
mismatch (SM). d) Effect of rigid shift (shx and 
shy). e) Effect of rotation (β). Scale bar in real 
space images: 10 μm. The OAM spectrum spans 
a range of 40ħ. The real space misalignment 
(left column) is magnified for better visualiza
tion. The real parameters that were used for the 
simulation are shown as labels.   

Fig. 3. Structure of the optimized convolution neural network. Blue, yellow and red boxes correspond to convolution layers, average pooling layers and fully 
connected layers, respectively. Filter sizes are shown between parentheses. 
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2.2. CNN and training dataset 

Fig. 3 shows the structure of the CNN that was optimized here. It is 
composed of 5 convolution layer filters, each of which is followed by an 
average-pooling layer filter. Two fully connected layers lead to the 
output, corresponding to a total of 2480,326 trainable parameters. The 
chosen activation function was the rectified linear unit (ReLU). The 
learning algorithm used was Adam [47] and the learning rate was 0.001, 
while the loss function was the root mean square difference between the 
predicted misalignment coefficients and the true coefficients. The neural 
network was implemented using the Keras library [48] and the Ten
sorFlow backend [49]. 

The CNN was trained on a dataset of 20,000 simulated images (+
2000 images for validation) for random values of the six misalignment 
parameters. The complete range of different aberrations is reported in 
Supplemental Material S1. Because the aberrations are different in na
ture and have different units and different sensitivities for the same 
amount of change, each of the training labels was normalized over the 
symmetric range (− 1,1) before being fed into the learning algorithm. 

Training can also be performed experimentally by changing the 
sorter parameters. Such a procedure is expected to improve fitting 
because it is not limited to an ideal numerical model. However, it re
quires complex automated control of the microscope and long-term 
stability of microscope alignment. These problems are avoided here by 
training the CNN on simulated images. 

In order to produce a training dataset, a numerical method was used 
to simulate the OAM spectroscopy experiment based on a full wave 
calculation and free space propagation, to describe the effects of 
different aberrations and misalignments on the final resolution. The 
beam was free-space propagated between the elements using the 
Fresnel-Kirchhoff integral 

Uz(u, v) =
eikz

iλz

∫∫

U0(x, y)e− ikxu+yv
z dxdy (3)  

while the lenses were defined by quadratic phase elements of the form 

T = exp
(

i(x2 + y2)

2f λ

)

(4) 

Calculations were performed numerically on an 8k x 8k mesh using a 
Fourier transform algorithm for convolutions. Versions of the code were 
written in Matlab (for testing purposes) and C (for fast parallel 
computing) [50]. Entries from the training database are shown in Fig. 4 
(top line). 

Before being fed into the CNN, spectra were pre-processed to account 

for decoherence effects. Spatial and temporal coherence effects in 
electron microscopy are usually described by convolution and/or 
multiplication by suitable damping functions. A systematic treatment of 
coherence effects on the resolution of an OAM sorter is beyond the scope 
of the present paper and will be presented elsewhere. We accounted for 
decoherence using Monte Carlo simulations by averaging over OAM 
spectra obtained for different beam positions in the sample plane. The 
size of the deflection was evaluated by considering broadening of the 
probe by between 0.5 and 1 Å. When magnification and propagation 
were accounted for, a best match was obtained for Gaussian broadening 
of 0.5ħ in the OAM direction. Conversely, nearly no broadening 
appeared to be necessary in the radial direction. Without accounting for 
decoherence, the CNN did not converge to the correct value. 

The CNN was trained on the simulation database for 20 cycles 
through the full training dataset (epoch), with a computation time of 
380 s per epoch, reaching a limit RMS error on the predicted parameter 
of 0.0038. Training was interrupted after 20 epochs, as the CNN started 
to show signs of overtraining (see Supplemental Material S2), i.e., the 
RMS error on the training dataset became lower than that estimated 
from the validation dataset, suggesting that the CNN was memorizing 
features from the training images and losing its generalization ability. In 
order to validate the fitting accuracy of the CNN, the predicted 
misalignment coefficients were fed back into the simulation algorithm. 
The resulting images (Fig. 4, lower row) are in good agreement with the 
real images. 

In order to describe the fitting accuracy of the CNN quantitatively, 
the mean absolute error (MAE) for the different categories was calcu
lated bases on the expression: 

MAE =

∑N
i |xi − x̃i|

N
(5)  

Where xi and x̃i are the estimated value of the aberration and its ground 
truth, respectively, while N is the number of items in the validation 
dataset for which the calculations were performed. 

The effect of the different aberrations on the OAM resolution of the 
final spectrum were studied systematically (see Supplemental Material 
S3). The MAE and tolerance range of CNN fitting for each of the 5 ab
errations are reported in the table 1. The estimation error is typically 
below the tolerance threshold, the only exception being the beam shifts. 
The MAE for the beam shift is slightly higher than for the other aber
rations, most likely due to the very wide training range of 1000 nm. 

Fig. 4. Demonstration of the predictive ability of the CNN for a comparison between simulated reference images (upper row) and simulations performed using the 
parameters predicted by the CNN (lower row). 
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3. Experimental results 

Experiments were performed at 300 kV in a FEI Titan G2 60–300 
TEM equipped with an X-FEG emitter and an image spherical aberration 
corrector. The illumination system was set to spot size 9. The three 
condenser lens system was used to achieve a probe convergence semi- 
angle of 2 mrad in the specimen plane. No sample was used, in order 
to allow free propagation of the electron beam in vacuum. The micro
scope was operated in “microprobe” mode with the objective lens at a 
standard pre-set value. The image aberration corrector was switched off, 
in order to achieve a larger focal distance between the sorting elements. 
In this configuration, element S2 was located in the diffraction plane of 
element S1 (mounted in the objective (OBJ) aperture plane), which is 
conjugate to the sample plane. The OAM spectrum could then be imaged 
on the detector with the microscope set to diffraction mode. The 
objective lens current was kept to a standard eucentric preset value, 
while focusing was achieved by changing the C3 excitation. 

The device was first tuned to find a good working condition. The 
polarization of the main needle of element S1 was set to Vc = 6.40 V, 
corresponding to a scale factor s ≈ 3 µrad. All experimental images were 
rescaled and rotated to match the scale and rotation of the training 
dataset before using the CNN. Calibration was achieved by sorting 
electron beams with known OAM signatures, as reported in [22]. 
Recorded OAM spectra were labelled based on the most sensitive pa
rameters, i.e., the main potential applied to element S1 and the main 
defocus f. Mechanical instabilities of the aperture holders in which the 
sorter elements were mounted made precise calibration impossible. 

The upper row of Fig. 5 shows experimental spectra recorded for 
different values of the potential applied to element S1 over a symmet
rical range (6 - 6.8 V) about a reference value of 6.4 V, in order to study 
the influence of SM misalignment. The images were fitted using the 
CNN. The fitting parameters provided by the CNN were used to simulate 
spectra, in order to evaluate the qualities of the fits. The simulated 
spectra are shown in the lower row of Fig. 5. This comparison demon
strates the ability of the CNN to identify and analyse the main features of 
the spectra, in particular the arrowhead-like central peak, which points 
towards or away from element S2 (i.e., up or down in the reference 
system used in Fig. 5), depending on the sign of SM. 

The second parameter that was investigated was the defocus of the 
first lens (df). Spectra were again recorded over a symmetrical range 
about a reference value that provided the best resolution during manual 
alignment. The experimental results are reported in the upper row of 
Fig. 6, alongside fitting results in the lower row. The CNN was again able 
to reproduce the experimental images satisfactorily. The primary feature 
recognized by the CNN is streaking of the spectrum towards or away 
from element S2 (i.e., up or down in the reference system used in Fig. 6), 
depending on the sign of the defocus. 

Minor differences between the experimental and simulated spectra 
are thought to result from the algorithm used for simulation of the 
training dataset, which is based on an ideal sorter model. In reality, the 
phase of the sorter may be affected by imperfections in the shapes of the 
needles and/or contaminants on them. Conventional lens aberrations 
have also been neglected in the training model. A possible way to 
overcome these limitations would be to finalize the CNN training 
directly on experimental images, possibly live on the microscope. The 
present network, which is pre-trained using simulated images, can be 
used as one module of a more complex network, such as an autoencoder 
[51] or a generative adversarial network [52], thereby exploiting 
transfer learning to accelerate the training process and requiring a 
significantly lower amount of experimental data. 

Fig. 7 shows an assessment of the accuracy of the quantification, in 
the form of a comparison between estimated and experimental values. 
Fig. 7a shows the expected linear trend between the estimated SM values 
and the real voltages applied to element S1. Unfortunately, a quantita
tive comparison requires a knowledge the ground truth values of the 
parameters. However, the value of the SM aberration cannot be accessed 
experimentally. Instead, only its relative variation with the potential 
applied to the first element of the sorter is well reproduced by the 
measurement. 

Fig. 7b shows a comparison between the estimated defocus values 
and the real defocus values (Fig. 6), which were obtained by varying the 
current (I) according to the expression 

df = − 2f
dI
I

(6) 

The linear trend again suggests successful fitting of the sorter mis
alignments. However, in this case, we have direct access to the real 
value. The slope of the regression line is 0.96 ± 0.05, where a slope of 1 
corresponds to a perfect quantitative match between the predictions of 
the CNN and the real values. 

It is interesting to notice how the misalignment effects combine 
together, resulting in a complicated parametric dependence. Our refer
ence experimental estimate of ideal defocus and SM is based on manual 
optimisation and is therefore not completely reliable, possibly because 
of a slight compensation between the two effects. The CNN can 
extrapolate the values of all of the parameters revealing such a 

Table 1 
Mean absolute error evaluated for the validation dataset and the tolerance 
threshold below which the aberration is considered acceptable.  

Aberration MAE Tolerance 

Defocus (df/f) 0.01% ±0.05% 
Size Mismatch (SM) 0.97% ±2% 
Shift x (shx) 34 nm ±30 nm 
Shift y (shy) 39 nm ±30 nm 
Rotation (β) 0.37 ◦ ±1 ◦

Fig. 5. Upper row: Experimental spectra recorded for different values of the potential of element S1 over the symmetrical range (6 - 6.8 V). Lower row: Simulated 
spectra for best-fitting parameters obtained from the CNN. 
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dependence. For instance, in our best manual alignment (Figs. 5c1 and 
6c1), the S1 potential was underestimated and the defocus was over
estimated with respect to the values fitted by the CNN (Figs. 5c2 and 
6c2). This discrepancy illustrates how aberrations can partially 
compensate for each other, just as spherical aberration and defocus can 
partially compensate for each other under Scherzer conditions for the 
electron probe. This compensation highlights the fact that perfect 
alignment would be difficult to achieve manually. 

The fitting of an experimental image using the CNN was found to 
only take (on average over 1000 iterations) 56 ms on a conventional 
laptop, including image pre-processing. The computational time is 
therefore negligible compared to the acquisition time. For this reason, 
we anticipate that a CNN can provide real-time control and feedback 
about alignment accuracy during experiments when it is integrated with 
the microscope control system. 

4. Conclusions 

We have demonstrated that a neural network can be used to deter
mine alignment parameters for the complex electron optical configura
tion of an OAM sorter, for which the effects of misalignment cannot 
easily be managed analytically or adjusted manually. The CNN is 
capable of determining parameters such as defocus and sorter electrode 
excitation from a single spectrum image. Such an approach can be 
applied in real time to align other complex optical systems, such as 
spherical aberration correctors, based on minimal experimental data. 
We envisage that in the future experimental devices will be able to self- 
diagnose and communicate with operators in real time. 
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