3,062 research outputs found

    Multi-Antenna Covert Communication via Full-Duplex Jamming Against a Warden With Uncertain Locations

    Get PDF
    Covert communication can hide the information transmission process from the warden to prevent adversarial eavesdropping. However, it becomes challenging when the location of warden is uncertain. In this paper, we propose a covert communication scheme against a warden with uncertain locations, which maximizes the connectivity throughput between a multi-antenna transmitter and a full-duplex jamming receiver with the limit of covert outage probability (the probability of the transmission found by the warden). First, we analyze the monotonicity of the covert outage probability to obtain the optimal location for the warden. Then, under this worst situation, we optimize the transmission rate, the transmit power and the jamming power of covert communication to maximize the connection throughput. This problem is solved in two stages. First, we derive the transmit-to-jamming power ratio limit from the maximum allowed covert outage probability. With this constraint, the connection probability is maximized over the transmit-to-jamming power ratio for a fixed transmission rate. Since the connection probability and the transmission rate are coupled, the bisection method is applied to maximize the connectivity throughput via optimizing the transmission rate iteratively. Simulation results are presented to evaluate the effectiveness of the proposed scheme

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    Betaine and Isoquinoline Alkaloids Protect against Heat Stress and Colonic Permeability in Growing Pigs

    Get PDF
    Heat stress (HS) compromises productivity of pork production, in part as a result of increased oxidative stress and inflammatory responses, particularly within the gastrointestinal tract. This study aimed to investigate whether plant-derived betaine and isoquinoline alkaloids could ameliorate HS in pigs. Fifty female Large White × Landrace grower pigs, which were acclimated to control (CON), control plus betaine (BET), or control plus isoquinoline alkaloids (IQA) diets for 14 days were then exposed to heat stress or thermoneutral condition. Both BET and IQA partially ameliorated increases in respiration rate (p = 0.013) and rectal temperature (p = 0.001) associated with HS conditions. Heat stress increased salivary cortisol concentrations and reduced plasma creatinine, lactate, and thyroid hormone concentrations. Heat stress increased colon FD4 permeability, which was reduced by IQA (p = 0.030). Heat stress increased inflammation in the jejunum and ileum, as indicated by elevated interleukin-1β (p = 0.022) in the jejunum and interleukin-1β (p = 0.004) and interleukin-8 (p = 0.001) in the ileum. No differences in plasma total antioxidant capacity (TAC) were observed with HS, but betaine increased plasma TAC compared to IQA. Dietary BET increased betaine concentrations in the jejunum, ileum (p < 0.001 for both), plasma, liver, kidney (p < 0.010 for all), urine (p = 0.002) and tended to be higher in muscle (p = 0.084). Betaine concentration was not influenced by HS, but it tended to be higher in plasma and accumulated in the liver. These data suggest that betaine and isoquinoline alkaloids supplementation ameliorated consequences of heat stress in grower pigs and protected against HS induced increases in colonic permeability

    Isolated brachydactyly type E caused by a HOXD13 nonsense mutation: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brachydactyly type E (BDE; MIM#113300) is characterized by shortening of the metacarpal, metatarsal, and often phalangeal bones, and predominantly affects postaxial ray(s) of the limb. BDE may occur as an isolated trait or as part of a syndrome. Isolated BDE is rare and in the majority of cases the molecular pathogenesis has so far not been resolved. Originally, the molecular cause of isolated BDE has been unravelled in 2 families and shown to result from heterozygous missense mutations in the homeodomain of the <it>HOXD13 </it>gene. Since the initial manuscript, one further <it>HOXD13 </it>mutation has been reported only in a single family manifesting isolated BDE.</p> <p>Case Presentation</p> <p>In this paper, we report on a Polish family exhibiting isolated BDE caused by a novel nonsense heterozygous <it>HOXD13 </it>mutation. We investigated a Polish female proband and her father, both affected by isolated BDE, in whom we identified a nonsense heterozygous mutation c.820C > T(p.R274X) in the <it>HOXD13 </it>gene. So far, only two missense <it>HOXD13 </it>substitutions (p.S308C and p.I314L), localized within the homeodomain of the HOXD13 transcription factor, as well as a single nonsense mutation (p.E181X) were associated with BDE. Both missense changes were supposed to alter DNA binding affinity of the protein.</p> <p>Conclusion</p> <p>The variant p.R274X identified in our proband is the fourth <it>HOXD13 </it>mutation, and the second truncating (nonsense) mutation, reported to result in typical isolated BDE. We refer our clinical and molecular findings to the previously described <it>HOXD13 </it>associated phenotypes and mutations.</p

    Controlled elevated temperatures during early-mid gestation cause placental insufficiency and implications for fetal growth in pregnant pigs

    Get PDF
    It is known that pig offspring born from pregnant pigs exposed to elevated ambient temperatures during gestation have altered phenotypes, possibly due to placental insufficiency and impaired fetal growth. Therefore, the objective of this study was to quantify the effect of maternal heat exposure during early-mid gestation, when pig placentae grow heavily, on placental and fetal development. Fifteen pregnant pigs were allocated to thermoneutral (TN; 20 °C; n = 7) or cyclic elevated temperature conditions (ET; 28 to 33 °C; n = 8) from d40 to d60 of gestation. Following euthanasia of the pigs on d60, placental and fetal morphometry and biochemistry were measured. Compared to TN fetuses, ET fetuses had increased (P = 0.041) placental weights and a lower (P = 0.013) placental efficiency (fetal/placental weight), although fetal weights were not significantly different. Fetuses from ET pigs had reduced (P = 0.032) M. longissimus fibre number density and a thicker (P = 0.017) placental epithelial layer compared to their TN counterparts. Elevated temperatures decreased (P = 0.026) placental mRNA expression of a glucose transporter (GLUT-3) and increased (P = 0.037) placental IGF-2 mRNA expression. In conclusion, controlled elevated temperatures between d40 to d60 of gestation reduced pig placental efficiency, resulting in compensatory growth of the placentae to maintain fetal development. Placental insufficiency during early-mid gestation may have implications for fetal development, possibly causing a long-term phenotypic change of the progeny

    Effects of chirality on the intracellular localization of binuclear ruthenium(II) polypyridyl complexes

    Get PDF
    Interest in binuclear ruthenium(II) polypyridyl complexes as luminescent cellular imaging agents and for biomedical applications is increasing rapidly. We have investigated the cellular localization, uptake, and biomolecular interactions of the pure enantiomers of two structural isomers of [μ-bipb(phen)4Ru2]4+ (bipb is bis(imidazo[4,5-f]-1,10-phenanthrolin-2-yl)benzene and phen is 1,10-phenanthroline) using confocal laser scanning microscopy, emission spectroscopy, and linear dichroism. Both complexes display distinct enantiomeric differences in the staining pattern of fixed cells, which are concluded to arise from chiral discrimination in the binding to intracellular components. Uptake of complexes in live cells is efficient and nontoxic at 5 μM, and occurs through an energy-dependent mechanism. No differences in uptake are observed between the structural isomers or the enantiomers, suggesting that the interactions triggering uptake are rather insensitive to structural variations. Altogether, these findings show that the complexes investigated are promising for future applications as cellular imaging probes. In addition, linear dichroism shows that the complexes exhibit DNA-condensing properties, making them interesting as potential gene delivery vectors

    Maternal Heat Stress Alters Expression of Genes Associated with Nutrient Transport Activity and Metabolism in Female Placentae from Mid-Gestating Pigs

    Get PDF
    Placental insufficiency is a known consequence of maternal heat stress during gestation in farm animals. The molecular regulation of placentae during the stress response is little known in pigs. This study aims to identify differential gene expression in pig placentae caused by maternal heat exposure during early to mid-gestation. RNA sequencing (RNA-seq) was performed on female placental samples from pregnant pigs exposed to thermoneutral control (CON; constant 20 °C; n = 5) or cyclic heat stress (HS; cyclic 28 to 33 °C; n = 5) conditions between d40 and d60 of gestation. On d60 of gestation, placental efficiency (fetal/placental weight) was decreased (p = 0.023) by maternal HS. A total of 169 genes were differentially expressed (FDR ≤ 0.1) between CON and HS placentae of female fetuses, of which 35 genes were upregulated and 134 genes were downregulated by maternal HS. The current data revealed transport activity (FDR = 0.027), glycoprotein biosynthetic process (FDR = 0.044), and carbohydrate metabolic process (FDR = 0.049) among the terms enriched by the downregulated genes (HS vs. CON). In addition, solute carrier (SLC)-mediated transmembrane transport (FDR = 0.008) and glycosaminoglycan biosynthesis (FDR = 0.027), which modulates placental stroma synthesis, were identified among the pathways enriched by the downregulated genes. These findings provide evidence that heat-stress induced placental inefficiency may be underpinned by altered expression of genes associated with placental nutrient transport capacity and metabolism. A further understanding of the molecular mechanism contributes to the identification of placental gene signatures of summer infertility in pigs

    The physics of spreading processes in multilayer networks

    Get PDF
    The study of networks plays a crucial role in investigating the structure, dynamics, and function of a wide variety of complex systems in myriad disciplines. Despite the success of traditional network analysis, standard networks provide a limited representation of complex systems, which often include different types of relationships (i.e., "multiplexity") among their constituent components and/or multiple interacting subsystems. Such structural complexity has a significant effect on both dynamics and function. Throwing away or aggregating available structural information can generate misleading results and be a major obstacle towards attempts to understand complex systems. The recent "multilayer" approach for modeling networked systems explicitly allows the incorporation of multiplexity and other features of realistic systems. On one hand, it allows one to couple different structural relationships by encoding them in a convenient mathematical object. On the other hand, it also allows one to couple different dynamical processes on top of such interconnected structures. The resulting framework plays a crucial role in helping achieve a thorough, accurate understanding of complex systems. The study of multilayer networks has also revealed new physical phenomena that remain hidden when using ordinary graphs, the traditional network representation. Here we survey progress towards attaining a deeper understanding of spreading processes on multilayer networks, and we highlight some of the physical phenomena related to spreading processes that emerge from multilayer structure.Comment: 25 pages, 4 figure

    An Effective Amperometric Biosensor Based on Gold Nanoelectrode Arrays

    Get PDF
    A sensitive amperometric biosensor based on gold nanoelectrode array (NEA) was investigated. The gold nanoelectrode array was fabricated by template-assisted electrodeposition on general electrodes, which shows an ordered well-defined 3D structure of nanowires. The sensitivity of the gold NEA to hydrogen peroxide is 37 times higher than that of the conventional electrode. The linear range of the platinum NEA toward H2O2is from 1 × 10−6to 1 × 10−2 M, covering four orders of magnitudes with detection limit of 1 × 10−7 M and a single noise ratio (S/N) of four. The enzyme electrode exhibits an excellent response performance to glucose with linear range from 1 × 10−5to 1 × 10−2 M and a fast response time within 8 s. The Michaelis–Menten constantkm and the maximum current densityimaxof the enzyme electrode were 4.97 mM and 84.60 μA cm−2, respectively. This special nanoelectrode may find potential application in other biosensors based on amperometric signals

    The greater proportion of born-light progeny from sows mated in summer contributes to increased carcass fatness observed in spring

    Get PDF
    The backfat of pig carcasses is greater in spring than summer in Australia. The unexplained seasonal variation in carcass backfat creates complications for pig producers in supplying consistent lean carcasses. As a novel explanation, we hypothesised that the increased carcass fatness in spring was due to a greater percentage of born-light progeny from sows that were mated in summer and experienced hot conditions during early gestation. The first part of our experiment compared the birth weight of piglets born to the sows mated in summer (February, the Southern Hemisphere) with those born to sows mated in autumn (May; the Southern Hemisphere), and the second part of the experiment compared the growth performance and carcass fatness of the progeny that were stratified as born-light (0.7–1.1 kg) and born-normal (1.3–1.7 kg) from the sows mated in these two seasons. The results showed that the sows mated in summer experienced hotter conditions during early gestation as evidenced by an increased respiration rate and rectal temperature, compared with those mated in autumn. The sows mated in summer had a greater proportion of piglets that were born ≤1.1 kg (24.2% vs. 15.8%, p < 0.001), lower average piglet birth weight (1.39 kg vs. 1.52 kg, p < 0.001), lower total litter weights (18.9 kg vs. 19.5 kg, p = 0.044) and lower average placental weight (0.26 vs. 0.31 kg, p = 0.011) than those mated in autumn, although litter sizes were similar. Feed intake and growth rate of progeny from 14 weeks of age to slaughter (101 kg live weight) were greater for the born-normal than born-light pigs within the progeny from sows mated in autumn, but there was no difference between the born-light and normal progeny from sows mated in summer, as evidenced by the interaction between piglet birth weight and sow mating season (Both p < 0.05). Only the born-light piglets from the sows mated in summer had a greater backfat thickness and loin fat% than the progeny from the sows mated in autumn, as evidenced by a trend of interaction between piglet birth weight and sow mating season (Both p < 0.10). In conclusion, the increased proportion of born-light piglets (0.7–1.1 kg range) from the sows mated in summer contributed to the increased carcass fatness observed in spring
    • …
    corecore