107 research outputs found

    Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition

    Get PDF
    BACKGROUND: Over the past several years our research group has taken a systematic, comprehensive approach to determining the effects on body function (hormonal and non-hormonal) of varying the amounts and types of proteins, carbohydrates and fats in the diet. We have been particularly interested in the dietary management of type 2 diabetes. Our objective has been to develop a diet for people with type 2 diabetes that does not require weight loss, oral agents, or insulin, but that still controls the blood glucose concentration. Our overall goal is to enable the person with type 2 diabetes to control their blood glucose by adjustment in the composition rather than the amount of food in their diet. METHODS: This paper is a brief summary and review of our recent diet-related research, and the rationale used in the development of diets that potentially are useful in the treatment of diabetes. RESULTS: We determined that, of the carbohydrates present in the diet, absorbed glucose is largely responsible for the food-induced increase in blood glucose concentration. We also determined that dietary protein increases insulin secretion and lowers blood glucose. Fat does not significantly affect blood glucose, but can affect insulin secretion and modify the absorption of carbohydrates. Based on these data, we tested the efficacy of diets with various protein:carbohydrate:fat ratios for 5 weeks on blood glucose control in people with untreated type 2 diabetes. The results were compared to those obtained in the same subjects after 5 weeks on a control diet with a protein:carbohydrate:fat ratio of 15:55:30. A 30:40:30 ratio diet resulted in a moderate but significant decrease in 24-hour integrated glucose area and % total glycohemoglobin (%tGHb). A 30:20:50 ratio diet resulted in a 38% decrease in 24-hour glucose area, a reduction in fasting glucose to near normal and a decrease in %tGHb from 9.8% to 7.6%. The response to a 30:30:40 ratio diet was similar. CONCLUSION: Altering the diet composition could be a patient-empowering method of improving the hyperglycemia of type 2 diabetes without weight loss or pharmacologic intervention

    A novel mutation in the glycogen synthase 2 gene in a child with glycogen storage disease type 0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycogen storage disease type 0 is an autosomal recessive disease presenting in infancy or early childhood and characterized by ketotic hypoglycemia after prolonged fasting and postprandial hyperglycemia and hyperlactatemia. Sixteen different mutations have been identified to date in the gene which encodes hepatic glycogen synthase, resulting in reduction of glycogen storage in the liver.</p> <p>Case Presentation</p> <p>Biochemical evaluation as well as direct sequencing of exons and exon-intron boundary regions of the <it>GYS2 </it>gene were performed in a patient presenting fasting hypoglycemia and postprandial hyperglycemia and her parents. The patient was found to be compound heterozygous for one previously reported nonsense mutation (c.736 C>T; R243X) and a novel frameshift mutation (966_967delGA/insC) which introduces a stop codon 21 aminoacids downstream from the site of the mutation that presumably leads to loss of 51% of the COOH-terminal part of the protein. The glycemia and lactatemia of the parents after an oral glucose tolerance test were evaluated to investigate a possible impact of the carrier status on the metabolic profile. The mother, who presented a positive family history of type 2 diabetes, was classified as glucose intolerant and the father, who did not exhibit metabolic changes after the glucose overload, had an antecedent history of hypoglycemia after moderate alcohol ingestion.</p> <p>Conclusion</p> <p>The current results expand the spectrum of known mutations in <it>GYS2 </it>and suggest that haploinsufficiency could explain metabolic abnormalities in heterozygous carriers in presence of predisposing conditions.</p

    Characterization of the L-Lactate Dehydrogenase from Aggregatibacter actinomycetemcomitans

    Get PDF
    Aggregatibacter actinomycetemcomitans is a Gram-negative opportunistic pathogen and the proposed causative agent of localized aggressive periodontitis. A. actinomycetemcomitans is found exclusively in the mammalian oral cavity in the space between the gums and the teeth known as the gingival crevice. Many bacterial species reside in this environment where competition for carbon is high. A. actinomycetemcomitans utilizes a unique carbon resource partitioning system whereby the presence of L-lactate inhibits uptake of glucose, thus allowing preferential catabolism of L-lactate. Although the mechanism for this process is not fully elucidated, we previously demonstrated that high levels of intracellular pyruvate are critical for L-lactate preference. As the first step in L-lactate catabolism is conversion of L-lactate to pyruvate by lactate dehydrogenase, we proposed a model in which the A. actinomycetemcomitans L-lactate dehydrogenase, unlike homologous enzymes, is not feedback inhibited by pyruvate. This lack of feedback inhibition allows intracellular pyruvate to rise to levels sufficient to inhibit glucose uptake in other bacteria. In the present study, the A. actinomycetemcomitans L-lactate dehydrogenase was purified and shown to convert L-lactate, but not D-lactate, to pyruvate with a Km of approximately 150 µM. Inhibition studies reveal that pyruvate is a poor inhibitor of L-lactate dehydrogenase activity, providing mechanistic insight into L-lactate preference in A. actinomycetemcomitans

    Risk factor screening to identify women requiring oral glucose tolerance testing to diagnose gestational diabetes : a systematic review and meta-analysis and analysis of two pregnancy cohorts

    Get PDF
    BACKGROUND: Easily identifiable risk factors including: obesity and ethnicity at high risk of diabetes are commonly used to indicate which women should be offered the oral glucose tolerance test (OGTT) to diagnose gestational diabetes (GDM). Evidence regarding these risk factors is limited however. We conducted a systematic review (SR) and meta-analysis and individual participant data (IPD) analysis to evaluate the performance of risk factors in identifying women with GDM. METHODS: We searched MEDLINE, Medline in Process, Embase, Maternity and Infant Care and the Cochrane Central Register of Controlled Trials (CENTRAL) up to August 2016 and conducted additional reference checking. We included observational, cohort, case-control and cross-sectional studies reporting the performance characteristics of risk factors used to identify women at high risk of GDM. We had access to IPD from the Born in Bradford and Atlantic Diabetes in Pregnancy cohorts, all pregnant women in the two cohorts with data on risk factors and OGTT results were included. RESULTS: Twenty nine published studies with 211,698 women for the SR and a further 14,103 women from two birth cohorts (Born in Bradford and the Atlantic Diabetes in Pregnancy study) for the IPD analysis were included. Six studies assessed the screening performance of guidelines; six examined combinations of risk factors; eight evaluated the number of risk factors and nine examined prediction models or scores. Meta-analysis using data from published studies suggests that irrespective of the method used, risk factors do not identify women with GDM well. Using IPD and combining risk factors to produce the highest sensitivities, results in low specificities (and so higher false positives). Strategies that use the risk factors of age (>25 or >30) and BMI (>25 or 30) perform as well as other strategies with additional risk factors included. CONCLUSIONS: Risk factor screening methods are poor predictors of which pregnant women will be diagnosed with GDM. A simple approach of offering an OGTT to women 25 years or older and/or with a BMI of 25kg/m2 or more is as good as more complex risk prediction models. Research to identify more accurate (bio)markers is needed. Systematic Review Registration: PROSPERO CRD42013004608

    Metabolite Cross-Feeding Enhances Virulence in a Model Polymicrobial Infection

    Get PDF
    Microbes within polymicrobial infections often display synergistic interactions resulting in enhanced pathogenesis; however, the molecular mechanisms governing these interactions are not well understood. Development of model systems that allow detailed mechanistic studies of polymicrobial synergy is a critical step towards a comprehensive understanding of these infections in vivo. In this study, we used a model polymicrobial infection including the opportunistic pathogen Aggregatibacter actinomycetemcomitans and the commensal Streptococcus gordonii to examine the importance of metabolite cross-feeding for establishing co-culture infections. Our results reveal that co-culture with S. gordonii enhances the pathogenesis of A. actinomycetemcomitans in a murine abscess model of infection. Interestingly, the ability of A. actinomycetemcomitans to utilize L-lactate as an energy source is essential for these co-culture benefits. Surprisingly, inactivation of L-lactate catabolism had no impact on mono-culture growth in vitro and in vivo suggesting that A. actinomycetemcomitans L-lactate catabolism is only critical for establishing co-culture infections. These results demonstrate that metabolite cross-feeding is critical for A. actinomycetemcomitans to persist in a polymicrobial infection with S. gordonii supporting the idea that the metabolic properties of commensal bacteria alter the course of pathogenesis in polymicrobial communities
    • …
    corecore