36 research outputs found

    An experimental investigation into the dimensional error of powder-binder three-dimensional printing

    Get PDF
    This paper is an experimental investigation into the dimensional error of the rapid prototyping additive process of powder-binder three-dimensional printing. Ten replicates of a purpose-designed part were produced using a three-dimensional printer, and measurements of the internal and external features of all surfaces were made using a general purpose coordinate measuring machine. The results reveal that the bases of all replicates (nominally flat) have a concave curvature, producing a flatness error of the primary datum. This is in contrast to findings regarding other three-dimensional printing processes, widely reported in the literature, where a convex curvature was observed. All external surfaces investigated in this study showed positive deviation from nominal values, especially in the z-axis. The z-axis error consisted of a consistent positive cumulative error and a different constant error in different replicates. By compensating for datum surface error, the average total height error of the test parts can be reduced by 25.52 %. All the dimensional errors are hypothesised to be explained by expansion and the subsequent distortion caused by layer interaction during and after the printing process

    Emergence of 3D Printed Dosage Forms: Opportunities and Challenges

    Get PDF
    The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such as extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, including design flexibility and control and manufacture which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry

    Additive Manufacturing of Composites and Complex Materials

    No full text

    4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    Get PDF
    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques

    A computational model for cell/ECM growth on 3D surfaces using the level set method: a bone tissue engineering case study

    Full text link
    Three dimensional (3D) open porous scaffolds are commonly used in tissue engineering (TE) applications to provide an initial template for cell attachment and subsequent cell growth and construct development. The macroscopic geometry of the scaffold is key in determining the kinetics of cell growth and thus in vitro ‘tissue’ formation. In this study we developed a computational framework based on the level set methodology to predict curvature-dependent growth of the cell/extracellular matrix domain within TE constructs. Scaffolds with various geometries (hexagonal, square, triangular) and pore sizes (500 and 1000 µm) were produced in house by additive manufacturing, seeded with human periosteum-derived cells and cultured under static conditions for 14 days. Using the projected tissue area as an output measure, the comparison between the experimental and the numerical results demonstrated a good qualitative and quantitative behavior of the framework. The model in its current form is able to provide important spatio-temporal information on final shape and speed of pore-filling of tissue engineered constructs by cells and extracellular matrix during static culture
    corecore