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ABSTRACT 

The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing 

technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) 

technology has evolved to such as extent that it is currently being used in a wide range of applications 

including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the 

pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. 

This paper presents various 3D printing technologies such as stereolithographic, powder based, 

selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also 

provides a comprehensive review of previous attempts at using 3D printing technologies on the 

manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with 

adaptability in the pharmaceutical field have been highlighted, including design flexibility and control 

and manufacture which enables the preparation of dosage forms with complex designs and 

geometries, multiple actives and tailored release profiles. An insight into the technical challenges 

facing the different 3D printing technologies such as the formulation and processing parameters is 

provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D 

printing to fulfil its real potential in the pharmaceutical industry.  

 

KEY WORDS additive manufacturing, rapid prototyping, three-dimensional, FDM, FFF, Patient-

specific 
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ABBREVIATIONS  

3D Three-dimensional 

APIs  Active pharmaceutical ingredients  

CLIP  Continuous layer interface production  

EXT  Semi-solid extrusion  

FDM   Fused deposition modelling   

FFF  Fused Filament Fabrication  

HPC Hydroxypropyl cellulose 

HPMC Hydroxypropylmethyl cellulose 

PB  Powder based  

PCL Polycaprolactone  

PEG Polyethylene glycol 

PLLA Poly (-L) lactic acid  

PVA Poly vinyl alcohol 

PVP  Polyvinylpyrrolidone  

SLA   Stereolithographic  

SLS Selective laser sintering 
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INTRODUCTION  

The demand for a unique approach for individualized medicine is rising rapidly. There is now greater 

emphasis on a patient-specific or tailored method of dosing and dose combinations instead of the 

standard mass produced medicines based on “One Size Fits All” (1). The need to individualized dosing 

arises from differences in the patient’s age, weight and severity of disease. These conditions require 

the modification of a dose that is suited the patient’s individual needs thus minimising potential for 

adverse effects of the drug. It was reported that 75-85% of adverse effects from drug therapy occur as 

a result of inappropriate dosing or dose combinations (2).  

Despite advancements in drug administration methods the oral route of administration is still the most 

preferred choice by patients. This preference stems up from the fact that they are relatively safe, very 

convenient, easy to use and affordable. Approximately 40% of drug delivery are taken through the oral 

route (3). Oral drug delivery market values is expected to rise from $49 billion in 2010 to $97 billion by 

2017 (4). Since the use of oral solid dosage forms (especially tablets) have earned widespread 

acceptance by most patients and carers, personalisation of dosage form is a potential breakthrough in 

the healthcare system.  

A major implication of personalized medicine is the urgent necessity to modify drug dosing and drug 

combinations and customized healthcare to meet an individual patient’s need. Therefore, methods for 

tailoring the dosage forms to individual patient’s needs are highly desirable. The conventional 

manufacturing processes involved in the production of popular oral solid dosage forms (e.g. tablets and 

capsules) have been designed for large-scale manufacturing. They lack flexibility in dosing, particularly 

when dose variations or drug combinations are involved. In addition, major capital is needed to acquire 

several equipment, large operation spaces and demands highly skilled operators to function efficiently 

and safely. The employment of several steps (milling, mixing, granulation, drying etc.) involved in 

manufacturing processes (5) renders the process too rigid for high level of flexibility required to bring 

personalized medicines into reality. 

Dose modifications for solid dosage forms are currently achieved through the dispensing of multiple low 

dose tablets to obtain a higher dose or by splitting/dividing larger sized tablets. It is estimated that 3000 

compounding pharmacies fill more than 30 million prescriptions per year in the United States in an 

attempt to customize drugs for individual patients (6). Tablet division is achieved mainly using hands, 
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knives or tablet splitters, which introduce dose variations due to uneven weight distribution after splitting 

(7-12). Splitting solid dosage forms could also impact on release kinetics, especially for controlled or 

extended release formulations (13, 14). Moreover, fractioning of tablets can directly affect the integrity 

of the coating system leading to premature drug release. Splitting tablets might also be challenging for 

the elderly or patients with certain disease conditions e.g. arthritis.  

APPROACHES TO PERSONALIZED MEDICINES  

LIQUID DOSAGE FORMS 

In order to improve drugs’ efficiency and minimize their adverse effects, several approaches have been 

adopted in dose personalisation. For decades, the use of liquid dosage forms has been employed in 

personalising the dose. This can be easily achieved by altering the volumes administered using various 

dosing aids, usually by including a dispenser as a part of the packaging (15). This is the dosage form 

of choice for infants, toddlers and children due to the ease of modifying the dose in addition to 

overcoming swallowing difficulties with solid dosage forms. Liquids may also be used by adults 

especially in geriatrics with swallowing difficulties (16). Where no suitable licensed liquid dosage forms 

are available, prescribers may need to order these from Specials Manufacturers to meet the need of 

these patients (17).  

Despite the advantages of liquid dosage forms, they lack efficiency especially when large doses are 

required. Some drugs cannot be manufactured as liquids due to poor solubility of many actives. Their 

preparation in the form of suspensions could bring about physical chemical and microbiological stability 

challenges particularly during storage. Drugs in their solid state also normally have a longer half-life 

(18), making liquids less suitable for long term storage since liquids support the growth of 

microorganisms. Inaccuracies in dosing could result from irregularities in the measurements from the 

dosing aids (19, 20) or from the patient or carers incompetence (21). In addition, manufacturing liquid 

dosage forms is capital-intensive and products are usually significantly heavier which increase the 

delivery and storage costs. 

INKJET PRINTING  
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Another approach to personalized medication involves the use of inkjet printers. This idea originated 

from the same technique used in computer-operated inkjet printing which recreates digital images by 

propelling ink droplets onto paper. It was adapted for pharmaceutical application by the replacement of 

the ink with pharmaceutical solutions containing drugs and normal paper with edible sheets known as 

substrates (22, 23). A list of the possible substrates that could be used in ink jet printing has be compiled 

in a review by Alomari et al., (2014)(24). Manipulating the dose in inkjet printing could be achieved by 

changing the number of printed layers for a given area or by increasing the total printed area. The 

advancements in inkjet printing were based on the potential to print designed ratios of drugs and 

excipients as individual microdots onto an edible substrate. Two main inkjet dispensing systems have 

been investigated for pharmaceutical applications: thermal (23, 25) or piezoelectric inkjet printers (26-

29). 

Inkjet drug printing offers a significant advantage of accurate control of dose combination and pattern 

of drug release. It has demonstrated that deviations as low as 1.4% relative standard deviation can be 

achieved when 1 cm2 is printed with about 52 µg of the model drug (1). This however, is influenced by 

the nature of the substrate or printing technology (25, 30).  

Ink jet printing requires the starting materials to possess certain characteristics mainly; particle size 

needs to be ˂1 µm to avoid clogging the printer head, viscosity needs to be ˂ 20 cP and surface tension 

between 30-70 mN/m for efficient flow (27, 30). Ink jet printing is thus highly suitable for manufacturing 

drugs with low therapeutic doses, ideally in the microgram range, since they require a smaller area on 

the substrate. Obtaining higher doses will otherwise imply numerous printings on a particular area, 

which could lead to longer drying time and potential instabilities. A large surface area could be covered 

for larger doses but this means that a greater amount of substrate needs to be consumed thus inflating 

the size of the dosage form.  

3D PRINTING TECHNOLOGIES 

3D printing or additive manufacturing is a highly attractive technology that produces 3-dimensional 

objects by constructing successive layers of the used material under the control of computer software. 

Its ability to produce complex shapes and geometries remains one of its major advantages in 

manufacturing. It has established roots in engineering and many non-medical practices, especially in 

the automobile industries. Recently its applications in medical devices (31, 32), implants (33), tissue 
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regeneration (34, 35) and pharmaceutical dosage forms (36-38) etc. have been demonstrated with a 

wave of excitement particularly with regards to its potential in personalized medicine.  

Several technologies have been employed in the construction and stacking of layers of 3D printed 

objects. Table I summarises the principle mechanisms employed by the most common 3D printing 

technologies. The name of the technology is usually related to the technique involved in layer formation. 

3D printing in its essence is repeated and co-ordinated two-dimensional printing. The main focus in this 

review is on multi-layer 3D printing whilst single layer printing of flat object is considered less relevant.  

a. Stereolithographic 3D printing (SLA)  

Stereolithographic 3D printing involves the curing of photo-sensitive material/s (photo-polymerization) 

to produce a 3D object (39). Support structures may be designed to connect the different parts of the 

object in all phases of the building, thus, avoid the collapsing of the object during printing. Curing of the 

polymers is usually performed using ultraviolet (UV) light (40, 41) or the use of a digital light projection 

technique (DLP). SLA employs a digital mirroring device (42-44) to initiates a chemical reaction in the 

photopolymer which causes the gelation of the exposed area. This process is repeated layer after layer 

to build the entire parts of the object (Fig. 1a). This occurs as unreacted functional groups on the 

solidified structure in the first layer polymerises with the illuminated resin in the next layer ensuring 

adhesion and therefore, layer formation (45). Post printing processing is usually required to further cure 

the final product, to improve its mechanical integrity and to polish or remove the attached supports to 

the fabricated object (39).  

The liquid photopolymer resins employed in SLA are usually low-molecular weight polyacrylate, epoxy 

macromers or monomers which form very rigid, glassy and brittle materials (39, 46). The technology is 

efficient when it comes to rapid prototyping, with high level of accuracy and resolution. It can build 

objects that measures several cubic centimetres with a resolution down to 0.2 µm (47). Even though it 

is widely used in tissue engineering (41, 44, 48) and the fabrication of implantable devices (49) very 

few studies have been carried out in pharmaceutical applications. 

This technique has several disadvantages such as the potential health hazards from the use of resins 

as they are potential carcinogens. These resins are also photosensitive therefore long-term stability is 

problematic. In addition, SLA 3D printing technique is time consuming with a printing speed of about 1-
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3 cm/hour (50). However, a recent advancement in this technology has made it possible to achieve 

speeds up to 100 cm/hour in a process that fabricates the 3D object in a non-layer by layer fashion (51). 

This is known as continuous layer interface production (CLIP) where the creation of a dead zone (i.e. 

oxygen-containing zone that ensures photo-polymerization) could increase the printing speed 

b. Powder based (PB) 3D printing  

PB 3D printing technology was developed by the Massachusetts Institute of Technology (MIT) in the 

1980s (52). It involves the distribution of thin layers of powder (via powder bed or powder jetting 

mechanisms) selectively joined by applying drops of liquid binder from an inkjet or piezoelectric printer 

head (36). In alternative methods, binder solutions are jetted onto the powder layers (53) (Fig. 1b). PB 

3D printing has expanded into areas such as tissue engineering and pharmaceutical applications over 

a decade between 1993 to 2003 leading to its use in the manufacturing of implants (54) and oral dosage 

forms (36, 55).  

The use of PB 3D printing has been investigated for the fabrication of delayed release of drugs (56), 

with complex release profiles such as immediate-extended or dual pulsatory (57) as well as zero order 

release (58-60). For example, Pryce-Lewis et al. (2003) developed cylindrical drug delivery systems 

exhibiting zero-order release profiles using a method that involved uniaxial compression of PB 3D 

printed tablets (58). Yu et al. (2007) employed the method to construct a methacrylic or ethylcellulose 

matrix tablet to achieve a linear release of diclofenac sodium (59). The ability to construct complex 

formulation designs, even ones with loose powders in its inner regions, was also demonstrated using 

PB 3D printing (37, 61). A PB 3D printed core-shell structure containing the drug pseudoephedrine 

hydrochloride was also constructed and drug release was shown to be nearly at zero order (60).  

Recently, this technique has also been used in the fabrication of fast disintegrating tablets (61). A 

pioneering example of the commercialisation of powder based technology is the development of 

ZipDose®, the first FDA approved 3D printed tablet. This dosage form comprises of a highly porous 

structure even, at high doses (up to 1000 mg) which facilitates its rapid dispersion on contact with liquid 

(52).  
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The starting materials (i.e. powders and binder solutions) are already widely used in the pharmaceutical 

industry thus enabling the adaptation of PB 3D printing into manufacturing in compared to other 3D 

printing technologies. Nevertheless, PB 3D printed constructs usually require additional drying steps to 

eradicate residual solvents and improve physical resistance. Post-printing processes must also be 

carried out to remove excess powders accumulated during printing, confining its use to specialized 

powder laboratories and implicate significant wastage. The high porosity of structures resulting from PB 

3D printing is associated with poor mechanical resistance and high friability (36, 61). Furthermore, since 

PB 3D printing is limited by the thickness of the powder layer, achieving high resolution objects can be 

challenging (45).  

c.  Selective laser sintering (SLS) 3D printing 

SLS 3D printing is similar to powder based 3D printing except in this technology laser radiations are 

used to liquefy (fully or partially) and fuse the layered powders (62) (Fig. 1c). This is a standard 

technique for 3D printing of metals (63-69). The powders or starting materials that could be used 

include; polyamides, polystyrenes or polycarbonates (70). The sintered materials form part of the final 

object while the un-sintered materials remain as part of the supporting structure and requires post 

printing processing to be removed (71). 

The use of SLS in tissue engineering is well established (72, 73) and has been also applied effectively 

in several other non-medical manufacturing industries (74, 75). Thus far, it has not been used in 

pharmaceutical applications possibly due to the high energy input from the laser beam raising concerns 

about the possibility of drug and pharmaceutical excipients’ degradation.  

 

d. Fused deposition modelling (FDM) 3D printing 

FDM, also known as Fused Filament Fabrication (FFF) and first commercialized in 1991 (70) is currently 

one of the most commonly used low-cost techniques in 3D printing. In FDM, the object is formed by 

layers of melted or softened thermoplastic filament extruded from the printer’s head at specific directions 

as dictated by computer software. Inside the FDM’s head the material is heated to just above its melting 

point which is then extruded through a nozzle, and deposited layer by layer, solidifying in under a second 
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(45) (Fig. 1d). The application of this technology has been established for non-pharmaceutical purposes 

with a wide range of low cost printers available (76).  

Recently, FDM 3D printing has found its way into drug research and development where thermoplastic 

polymers such as PVA have been utilized as drug carriers. Initially drug loading into commercially 

available PVA filaments was achieved by incubation in saturated drug organic solutions. Goyanes et al. 

(2014) studied the incorporation of fluorescein into commercially available PVA filaments and the 

release of the dye was controlled using different infill percentages (77). Skowyra et al. (2014) 

demonstrated the capability of FDM in printing PVA filaments exhibiting an extended drug release of 

prednisolone for up to 24 h following oral administration (78). The potential of FDM in achieving 

extended release was also shown for 5-aminosalicylic acid (5-ASA) or 4-aminosalicylic acid (4-ASA). 

Moreover, the production of tablets with different geometries; pyramid, cube, cylinder, sphere and torus 

was proven to be viable using FDM 3D printing (79). Nevertheless, a major limitation for the use of FDM 

is the elevated temperature required for its operation (~220 oC), which may degrade a significant 

number of pharmaceutical excipient and active drugs (38). 

Drug loading in the filament is usually achieved through incubation in organic solvents and poor drug 

loading may limit its use to low dosed drugs (38, 77, 78). Until recently, FDM was confined to using non-

pharmaceutical grades of PLA and PVA. These polymers, however, have been used to achieve mainly 

extended release preparations. Nevertheless, recently, Pietrzak et al. (2015) bridged FDM 3D printing 

with hot melt extrusion (HME) in an attempt to increase the range of polymers that can be adapted with 

FDM and achieve higher drug loading. They demonstrated the feasibility of printing immediate and 

extended theophylline caplets based on cellulosic or methacrylic polymeric filaments with 50% drug 

loading (80). 

 

e. Semi-solid extrusion (EXT) 3D printing 

Another method of 3D printing involves layer-by-layer deposition of semi-solids (starting materials) 

through a syringe based tool-head (Fig. 1e). Semi-solids (gels or pastes) are formulated by mixing 

optimal ratios of polymers and appropriate solvent(s) in order to obtain a viscosity suitable for printing 
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(81, 82). It has a wide range of applications and the availability of bench top platforms further 

encourages its creative use in rapid prototyping of numerous objects. 

Khaled et al. (2014) pioneered manufacturing guaifenesin bilayer tablets using EXT and compared them 

to their commercially available counter parts (81). Similar release profile of 3D printed tablets and 

branded tablets demonstrated the versatility of EXT 3D printing in addition to offering an easier 

approach to drug manufacturing. The technique has also been used in multi-active tablets capable of 

delivering three drugs via two different release mechanisms; osmotic release and diffusion through the 

shell and gel layers, respectively (83). Furthermore, Khaled et al. (2015) demonstrated the feasibility of 

EXT 3D printing in constructing a multi-compartment polypill containing five actives and exhibiting a 

well-defined and independently controlled; immediate or sustained release profiles (84). 

 

Although 3D printing by extrusion does not require high temperature; extrusion requires materials to be 

in the form of gels or pastes which implies that shrinking or deformation of the product may occur 

following the drying process. The fabricated object may also collapse during 3D printing if a constructed 

layer did not harden sufficiently to withstand the weight of the successive layers. The technique is 

usually confined to a low resolution due to the fact that an orifice with a size of 0.4-0.8 mm is typically 

employed in EXT 3D printing. Table II highlights previous studies conducted in the field of drug delivery 

employing 3D printing technologies. 
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WHAT 3D PRINTING CAN BRING TO TABLET MANUFACTURING? 

 

3D printing has been evolving rapidly and the emergence of its various types is challenging the 

traditional ways that many products are produced. Its versatility, speed, cost and potential for tailored 

manufacturing is set disrupt many of the traditional manufacturing technologies. In this review the 

therapeutic and potential technical benefits of 3D printing to established tablet manufacturing industry 

are explored: 

 

a. Tailored dose 

3D printing is highly flexible and it is relatively simple to change the shape and size of the dosage form 

in response to patient or clinicians’ needs compared to traditional manufacturing techniques. Such 

ability has been exploited to modify the dose by manipulating the scale of the printed tablet via software 

order (78, 80). This is particularly important for paediatric doses where wide range of doses are 

frequently requested. Such flexibly enables the shape of the tablet (85, 86) to be made to suit a 

particular patient with swallowing difficulties.  

 

3D printing can also be extended to produce multiple active ingredient dosage forms, either as a single 

blend or as multi-layer or reservoir printed tablets to reduce the frequency and number of tablets taken 

by the patients daily (83). Various studies elucidated the flexibility of these technologies in fabricating 

bilayer tablets e.g. chlorpheniramine maleate and diclofenac (55) acetaminophen and caffeine (86) or 

even multiactive tablets e.g. captopril, nifedipine and glipizide which has the potential to treat 

hypertensive diabetic patients (83). The therapeutic efficiency of combination therapy is well-

established in cardiovascular protection and a number of fixed-dose combination therapies have been 

developed. The polypill concept has attracted considerable interest due to its proven efficiency in the 

treatment and prevention of cardiovascular disease and high blood pressure (87-89). However, the 

restricted dose-combination overlook the changing needs of an individual patient, which is important for 

this concept to fulfil its potential. Khaled et al. (2015) demonstrated the feasibility of extrusion based 3D 

printing for the fabrication of a polypill containing the drugs hydrochlothiazide, ramipril, aspirin, 

pravastatin and atenolol (84). Hence, highlighting the potential of 3D printing technologies in the 

individualised ‘polypill’ concept. 
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b. Mini-dispenser unit 

3D printers require minimal space (e.g. FDM or SLA) allowing them to fit in any environment, are 

affordable and can be remotely controlled using computer software and network (90). Moreover, 3D 

printing technologies allows not only small batches but individual items to be fabricated within a single 

manufacturing run. These characteristics allows 3D printer to function as a mini-dispenser to potentially 

bring tablet manufacturing closer to patients. For this to be achieved, stable and reproducible starting 

material needs to be mass-produced. This will delay the last step in tablet manufacturing and bring it 

closer to the patient (Fig. 2) (81). Fig. 3 summarise the composition of the proposed starting materials 

that can be used in all of these technologies.  

 

c. Integrated with healthcare network 

 3D printers are computerized fabricator that can produce complex 3D objects using data generated by 

computer software opens the door for a more dynamic supply chain. Developments in sensor 

technology will enable sensors to be implanted in or worn by patients to generate an inline clinical data 

feed which can be transmitted to and stored by healthcare staff (90). Physicians and pharmacists will 

be able to modify the next dose or drug combinations according to patient’s changing needs reflected 

by the transmitted data. As 3D printers can be remotely controlled, 3D printing of a dose will take place 

in the most accessible location to the patients (Fig. 4). Hence, such a dispensing system offers a clear 

advantage of shortening the time of a clinical response to patient’s needs and improving patient’s 

compliance by offering a seamless experience.  

 

d. New geometries and designs. 

The capacity of 3D printing in accurately constructing dosage forms with low content of active 

ingredients, as low as 10-12 mole per tablet has been demonstrated (36). Unlike conventional powder 

compression tableting technologies accurate spatial distribution of ingredients within a dosage form can 

also be achieved, hence opening a window to a large number of design and complex geometries not 

possible with traditional manufacturing methods. For instance, hollow or partly filled tablet designs which 

were not possible using conventional compression techniques can be readily made using 3D printing 

(77). 3D printing technologies also have the capability of positioning the active material in the fabricated 



 14 

object at will (90). Fig. 5 highlights a variety of tablet designs fabricated by different 3D printing 

technologies. 

 

The creation of medications with complex drug-release profiles is one of the most researched uses of 

3D printing (91). For example, different shapes and geometries of dosage form can be also used to 

achieve different release profiles. Rowe et al. (2000) fabricated tablets with complex release profiles 

using 3D printing including; immediate-extended, breakdown, enteric dual pulsatory and dual pulsatory 

(55). Sun and Soh (2015) controlled the release profile of a dye contained in a surface-eroding polymer 

by fabricating different shapes of the polymer. The modifications of matrix shape resulted in constant, 

pulsed, increasing or decreasing dye release profiles (57). Goyanes et al. (2015b) used the FDM 

process to create complex geometries and showed that, according to the shape of the drug delivery 

system, it was possible to control the drug dissolution profile (77).  

 

e. Accelerated disintegration 

One significant difference in 3D printing compared to powder compression is the pattern of powder 

aggregation within the tablet structure. In some examples of PB 3D printing, powder binding was 

confined to the periphery of the tablet design leaving a ‘loose’ powder in the centre (37, 61). Such a 

design proved to be instrumental in development of faster disintegrating tablets. Aprecia's ZipDose® 

demonstrated the capability in disintegrating in less than 10 seconds whilst containing a high dose of 

piracetam (1000 mg) (52).  

 

LIMITATIONS OF 3D PRINTING 

Although 3D printing is highly promising for manufacturing personalized dosage form, there are several 

technical and regulatory challenges need to be overcome before it is widely used for pharmaceutical 

applications  

 

Several 3D printing technologies (EXT, FDM and PB) rely on nozzle mechanism to build sequenced 

layers during the formation of the printed object. This creates a major challenge of maintaining a 

reproducible and consistent flow on demand as the print head stops and re-starts during printing a 

single or multiple objects. In powder based 3D printing for example, clogging of the nozzles in the 3D 

http://www.sciencedirect.com/science/article/pii/S0378517315304622#bib0205
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printer head, binder migration and bleeding and improper powder feeding and scraping are problems 

that need to be addressed (90). Powder based 3D printing in particular requires special laboratories to 

conduct the printing in since removal of excess powder which potential health and occupational hazards 

may be necessary (93). 

  

Another limitation of 3D printing is appearance of the finished product, where surface imperfections may 

be visible due to stacking of plastic beads or large-sized powder on top of each other (94). This is of 

particular significance in powder based and extrusion based 3D printing since significant drying time is 

required before it is possible to handle. Furthermore, post-treatment processes such as drying duration, 

rate and method can affect the properties and appearance of the final product. This is of significant 

importance in powder based, inkjet and extrusion-based 3D printing which all require post-operative 

drying (95). Seam lines between layers also tend to occur, when FDM 3D printing is in use (96). 

Nevertheless, Pietrzak et al. (2014) showed improved tablet morphology when methacrylic polymers 

were employed in 3D printing of drugs particularly when a high resolution (100 um layer thickness) was 

employed (80). 

 

The mechanical resistance of 3D printed tablets is dependent on its production technology. While FDM 

tends to produce highly resistant tablets (80), powder based and EXT 3D printing yields weaker 

structures. This was exhibited in their higher friability values (3.55 %) (37) compared to conventional 

tablets (81, 97). However, significant improvement have been achieved through a more resistant shell 

structure in a shell-core tablet design (37). 

 

Thus far, the material choices, colours, and surface finishes currently available for 3D printing are 

relatively limited when compared to conventional tablet compression processes. In the case of SLA 3D 

printing, the materials are confined to photopolarizable oligomers (56). In the case of FDM, it is 

impulsive to include thermoplastic polymers to fabricate the object through extrusion from a hot nozzle 

(90). Table III provides a balance sheet of major advantages and limitations of the different 3D printing 

technologies. 
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REGULATORY CHALLENGES 

3D printing technologies advancements have brought the prospect of personalized dose a step closer. 

However, can regulatory bodies and current legal framework handle the ambiguity of this boldly 

marching technology? 

 

The distinction between compounded and manufactured medicine is a central question about the 

regulations of 3D printed medicine. This question has major implications on the level of regulation for 

the 3D printed products. Tragic incidents such as, the New England Compounding Centre (NECC) in 

2012 (98) and dozens of other dangerous safety problems at compounding pharmacies (99, 100), have 

put the safety of pharmaceuticals under the spotlight. Moreover, important issues concerning 3D printed 

medicines like tort liability and intellectual rights needs to be addressed to protect manufacturers and 

end users. 

3D printing and its potential in reshaping pharmaceutical product development and manufacturing 

have not escaped the attention of regulatory bodies. However, meeting current regulatory requirements 

of the FDA may be a significant hurdle that may impede their introduction to the market (101). Several 

questions need to be answered in this regard: Which regulatory pathway will the innovators take to 

approach such non-traditional devices? Will the regulatory process comprise the ‘pharmaceutical ink’, 

and 3D printer as well as the end product? For those issues to be resolved, FDA may need to issue a 

short term guidance documents and look into modifying its traditional regulations to follow up with this 

rapidly-evolving technology (102). 

 

FDA recognized that new issues implicating this technology will arise and the process for change is 

already underway. It is working on developing a sound understanding of 3D printing through its own 

research (103). In particular, two laboratories within the FDA’s Office of Science and Engineering 

Laboratories (OSEL), the Laboratory for Solid Mechanics and FDA’s Functional Performance and 

Device Use Laboratory are being utilized for the purpose of studying the potential effects of 3D printing 

(104). In controversy, despite the rapidly building momentum of 3D printing, FDA’s planned guidance 

on 3D printing fell to the “B-list” in its 2015 medical device guidance agenda (105). Hence, a clear 

regulatory pathway regarding 3D printed products is likely to take some time (106). 

http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/MDUFAIII/ucm321367.htm?source=govdelivery&utm_medium=email&utm_source=govdelivery
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More lessons regarding approval of 3D printed products can be explained from medical devices, 

approximately eighty five 3D printed medical devices and implantables have gained FDA clearance 

(101). Several pathways exist to obtain FDA approval, amongst which are the 510 (k), PMA, de novo, 

HDE, etc. To date, all approved medical devices and implantables generated using this technology 

were granted clearance through the Premarket Notification - also called PMN or 510 (k) pathway (107) 

by proving that “3D printed product is substantially equivalent to a legally marketed device” (108). Such 

a regulatory approach can also be implemented for dosage forms by approving a 3D printed dosage 

form as a bioequivalent product to approved ones.  

 

Beside the traditional clearance routes, the FDA may also provide approval of 3D medical devices 

through abbreviated pathways. These pathways include emergency use pathways, compassionate use 

exemption pathways. In 2013 for example, a new born’s life suffering from tracheobronchomalacia was 

at risk, and via the emergency-use exemption pathway, an anatomically specific tracheal splint was 

approved to save the baby’s life (109). However, whether or not 3D printing of dosage forms could pass 

through these abbreviated routes is not clear.  

 

In spite of all regulatory hurdles associated with 3D printing medicine, the FDA approved the first 3D 

printed pill, Spritam® (levetiracetam) in August 2015. In this case the product is considered as approving 

mass-produced new production for equivalent product (52). 
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CONCLUSIONS 

The rapidly evolving 3D printing technologies and the dawn of pharmaceutical inks have huge potential 

in dosage form personalisation required by patients. This will revolutionize compounding dosage forms 

and bringing dosage form manufacturing closer to end users providing more relevant, effective and safe 

dose to the patient.  

 

Several 3D printing technologies have been employed to fabricate solid dosage forms for oral drug 

delivery. PB 3D printing technologies have evolved with several patent applications and an FDA 

approved product to be introduced to the market. FDM and EXT systems have also emerged in the last 

two years illustrating a highly promising potential for personalized dose.  

 

Despite making massive inroads into other manufacturing industries such as aerospace and automobile 

pharmaceutical 3D printing is still at its infancy. Many technical and regulatory challenges need to be 

overcome before widespread adoption in the pharmaceutical industry. However, the pace at which 3D 

printing is currently developing and the advantages that it brings to personalized dosage form, its 

importance cannot be ignored.  
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deposition modelling (FDM).  

Fig. 2 Schematic diagram of different steps involved in tablet manufacturing. 3D printing can delay the 

last manufacturing step and bring it closer to patients. 

Fig. 3 Examples of starting material for 3D printing and their corresponding 3D printed products: (a) 

Oligomer solution and (a1) a scaffold printed using SLA (44) (b) Powder + binder solution and (b1) a 

tablet printed using PB (61), (c) Powdered polymer and (c1) a scaffold printed using SLS (73), (d) 

Filament and (d1) an extended release tablet printed using FDM (78), (e) Polymer solution + powder 

(semi-solid) and (e1) a controlled release bilayer tablet printed using EXT (81). (Awaiting permission). 

Fig. 4 Integration of 3D printing technologies within a proposed patient-centred healthcare system. In-

line clinical data generated from sensors in patient’s body feed into healthcare network. Healthcare staff 

can access the data and order an e-prescription of an individualised dosage form in response to 

patient’s data. A 3D printer can locally fabricate the dose for the patient, hence providing an enhanced 

and seamless patient experience. 

Fig. 5 Examples of different designs used to manufacture 3D printed tablets. Simplistic design of disc 

has been initially employed (a) (77). Oval shape (b) (78) and an easier to swallow caplet shape was 

possible to fabricate using FDM 3D printing (C) (80). FDM 3D printing allowed fabrication of partially 

hollow tablets (d) (77). PB 3D printing constructed shell-core structure by selective deposition of binder 

solution in the shell domains (e) (36) and by adding internal supporting walls, tablet’s physical resistance 

can be improved (f) (61). PB 3D printing was also utilized to build doughnut shape tablets with linear 

drug release (g) (85). Pulsated drug release (h) and accelerating drug release (i) were achieved using 

casted gels in 3D printed containers (57). Multi-layer (j) and core-shell (k) caplets allowed simultaneous 

and sub sequential release of two actives (86). Polypills of 3 drugs (l) (83) or 5 different drugs (m) (84) 

with immediate and extended release patterns were EXT 3D printed.  
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Fig. 1 Mechanism of various 3D printing technologies: (a) Stereolithographic (SLA), (b1-2) Powder bed 

and powder jetting, (c) Selective laser sintering (SLS), (d) Semi-solid extrusion (EXT) and (e) Fused 

deposition modelling (FDM).  
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Fig. 2 Schematic diagram of different steps involved in tablet manufacturing. 3D printing can delay the 

last manufacturing step and bring it closer to patients. 
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Fig. 3 Examples of starting material for 3D printing and their corresponding 3D printed products: (a) 

Oligomer solution and (a1) a scaffold printed using SLA (44) (b) Powder + binder solution and (b1) a 

tablet printed using PB (61), (c) Powdered polymer and (c1) a scaffold printed using SLS (73), (d) 

Filament and (d1) an extended release tablet printed using FDM (78), (e) Polymer solution + powder 

(semi-solid) and (e1) a controlled release bilayer tablet printed using EXT (81). (Awaiting permission). 
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Fig. 4 Integration of 3D printing technologies within a proposed patient-centred healthcare system. In-

line clinical data generated from sensors in patient’s body feed into healthcare network. Healthcare staff 

can access the data and order an e-prescription of an individualised dosage form in response to 

patient’s data. A 3D printer can locally fabricate the dose for the patient, hence providing an enhanced 

and seamless patient experience. 
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Fig. 5 Examples of different designs used to manufacture 3D printed tablets. Simplistic design of disc 

has been initially employed (a) (77). Oval shape (b) (78) and an easier to swallow caplet shape was 

possible to fabricate using FDM 3D printing (C) (80). FDM 3D printing allowed fabrication of partially 

hollow tablets (d) (77). PB 3D printing constructed shell-core structure by selective deposition of binder 

solution in the shell domains (e) (36) and by adding internal supporting walls, tablet’s physical resistance 

can be improved (f) (61). PB 3D printing was also utilized to build doughnut shape tablets with linear 

drug release (g) (85). Pulsated drug release (h) and accelerating drug release (i) were achieved using 

casted gels in 3D printed containers (57). Multi-layer (j) and core-shell (k) caplets allowed simultaneous 

and sub sequential release of two actives (86). Polypills of 3 drugs (l) (83) or 5 different drugs (m) (84) 

with immediate and extended release patterns were EXT 3D printed.  
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Table I Concept and minimum layer thickness of main stream 3D printing technologies 

3D Printing technology Concept Minimum 

layer thickness 

Reference(s) 

Stereolithography (SLA) 

3D printing 

Scanning a focused Ultraviolet (UV) laser over the 

top of a photopolymerizable liquid in a layer by 

layer fashion 

100 µm  (110) 

Powder Based (PB) 3D 

printing 

The ink (binders and APIs or binder solutions) is 

sprinkled over a powder bed in two-dimensional 

fashion to make the final product in a layer by layer 

fashion. 

200 µm  

 

(36, 54, 55, 

59, 61, 85, 

111-114) 

Selective Laser Sintering 

(SLS) 3D printing 

A laser beam sinters the powder and binds it in 

layer-by-layer fashion.  

100 µm (115, 116) 

Fused deposition 

modelling (FDM) 3D 

printing 

Extruding a thermoplastic filament through high 

temperature nozzle into semi-solid fused state 

filament in layer by layer fashion. 

100 µm  (33, 38, 77, 

78, 117-119) 

Extrusion based (EXT) 3D 

Printing 

Extruding semi-solids (e.g. homogeneous paste) 

over moveable stage in layer by layer fashion into 

a product 

800 µm  (81, 83, 84) 
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Table II Summary of literature examples of 3D printed dosage form, intended aim, used active pharmaceutical ingredients (APIs) and excipients. 

3D Printing 
technology 

Type of dosage form Intended aim API/Excipients Reference(s) 

Powder based (PB) 3D 
printing 

Resorbable devices Fabrication of novel dosage forms with controlled release profiles Methylene blue and alizarin yellow/ Polycaprolactone (PCL) and 
polyethylene oxide (PEO) matrix materials 

(112) 

Tablets Fabrication of novel complex oral delayed-release tablets designs. Chlorpheniramine maleate and fluorescein disodium salt/ Eudragit E, 
Eudragit RL in acetone or lactose, polyvinylpyrrolidone (PVP) Tween 20 
in deionised water 

(36) 

Multi-drug implants Fabrication of multi-drug implants for bone tuberculosis Isoniazid and rifampicin/ Poly(dl-lactic acid) (PDLLA) (113) 

Microporous bioceramic 
implants  

Fabrication of microporous implants containing antibiotics for bone 
infections 

Vancomycin hydrochloride, ofloxacin and tetracycline hydrochloride/ 
Microporous dicalcium phosphate dehydrate, dicalcium phosphate 
anhydrous and hydroxyapatite. 

(120) 

Mesoporous bioactive glass 
(MBG) 

Fabrication of mesoporous bioactive glass intended for bone 
regeneration 

Dexamethasone/ MBG powder and polyvinylalcohol (PVA) (121) 

Tablets Fabrication of fast disintegrating tablets with loose powder in their 
central regions 

Acetaminophen and methylene blue/ lactose, PVP K30, mannitol, and 
colloidal silicon dioxide 

(37) 

Tablets Fabrication of controlled drug release tablets Acetaminophen/ Hydroxypropyl methylcellulose (HPMC), ethyl 
cellulose, Eudragit RS, stearic acid and sodium lauryl sulphate  

(59) 

Tablets Fabrication of Four types of complex oral drug delivery tablets: (1) 
Immediate–extended release, (2) Breakdown, (3) Enteric dual pulsatory, 
(4) Dual pulsatory 

API: Chlorpheniramine maleate and diclofenac  
Immediate–extended tablets - API/ Microcrystalline cellulose (MCC), 
Eudragit E and Eudragit RL 
Breakaway tablets - API/ MCC, lactose, Eudragit L100 and Kollidon SR  
Enteric dual pulse tablets – API/ Eudragit L, MCC and spray-dried 
lactose 
Dual pulsatory tablets - API/ Eudragit E, Eudragit L, MCC and spray 
dried lactose 

(55) 

cubic core-shell structures Development of zero order controlled release pseudoephedrine 
hydrochloride formulations 

Pseudoephedrine hydrochloride/ Kollidon SR, HPMC and triethyl citrate 
(TEC) 

(60) 

Implants Fabrication of an implant containing levoflocxacin intended for bacterial 
infections 

Levofloxacin/ poly-L-lactide (PLA) (54) 

Multi-layer drug delivery 
devices 

Design of a controlled drug release doughnut-shaped multi-layered drug 
delivery devices 

Acetaminophen/ HPMC and ethyl cellulose (EC)  (85) 

Orodispersible dosage forms Developing a rapidly oral dispersing dosage form of levetiracetam Levetiracetam/ MCC, glycerine, Tween 80, mannitol, povidone, 
Sucralose: 1-3 Monoammonium glycyrrhizinate and colloidal silicon 
dioxide  

(122) 

Implants Fabrication of drug implants with complicated architecture aimed at the 
prophylaxis and treatment of bone diseases 

Levofloxacin and rifampicine/ PLA (123) 

Hydraulic cement systems Fabrication of a bone regenerating scaffold using calcium aluminate 
cement 

Tricalcium aluminate and dodecacalcium heptaaluminate/ water–
glycerol  

(124) 

Extrusion based (EXT) 
3D printing 

Polymeric structures Fabrication of novel drug delivery systems particularly intended for 
chronic inflammatory disorders 

Dexamethasone-21-phosphate disodium/poly(lactic-co-glycolic acid) 
(PLGA) and PVA 

(82) 
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Multi-active solid dosage forms 
(polypill) 

Developing a cardiovascular treatment regime with one pill 
incorporating 5 drugs in different immediate and extended release 
compartments 

Aspirin, hydrochlorothiazide, atenolol, pravastatin sodium and 
ramipril/ cellulose acetate, D-mannitol and polyethylene glycol (PEG 
6000).  

(84) 

Tablets  Fabrication of a bilayer tablet for the treatment of respiratory tract 
infections 

Guaifenesin/HPMC, poly(acrylic acid) (PAA), MCC and sodium starch 
glycolate  

(81) 

Tablets 
(polypill) 

Development of a complex multi-compartment tablet incorporating 
sustained release compartments for nifedipine and glipizide as well as 
an osmotic pump for the drug captopril 

Captopril, nifedipine and glipizide/ HPMC matrix (83) 

Selective Laser 
Sintering (SLS) 3D 
printing 

Shell core structure Fabrication of controlled release drug delivery devices Methylene blue dye/ Poly amide (PA) (125) 

Cubic porous matrices Fabrication of porous polymeric matrix drug delivery devices Methylene blue dye/ Fine nylon powder (116) 

Porous biopolymeric 
microstructures 

Fabrication of porous polymeric disks as drug delivery systems (N/A)/ PCL and PLA (126) 

Fused Deposition 
Modelling (FDM) 3D 
printing 

Tablets Feasibility of fabricating personalized-dose medicines or unit dosage 
forms with controlled-release profiles 

Fluorescein/ PVA (77) 

Tablets Feasibility of using FDM to print tablets with different shapes  Acetaminophen/ PVA (79) 

Capsular devices Fabrication of novel swellable /erodible capsule shells able to achieve a 
pulsatile release 

Acetaminophen/ Hydroxypropyl cellulose (HPC) and PEG 1500 (127) 

Tablets Fabrication of modified-release drug loaded tablets 5-Aminosalicylic acid (5-ASA) or 4-aminosalicylic acid (4-ASA)/ PVA (38) 

Tablets Feasibility of using FDM to print and control the dose of extended 
release tablets 

Prednisolone/ PVA (78) 

Tablets Development of a flexible dose tablet system able to print tablets with 
immediate and/or extended drug release 

Theophylline/Eudragit RL, RS, E and HPC (80) 

Circular Discs Development of medical devices that are capable of preventing biofilm 
formation 

Nitrofurantoin/ PLA (117) 

Circular Discs Feasibility of producing drug eluting implants Nitrofurantoin/ PLA and hydroxyapatite nanoparticles (33) 
Reservoir‐Matrix structures Development of controlled drug delivery device matrices Methylene blue dye/unspecified polymer (128) 
Different medical constructs: 
filaments, circular discs and 
beads  

Development of dosage forms with sustained delivery of antibiotics and 
chemotherapeutic drugs 

Gentamicin or methotrexate/ PLA (118) 

SLS or FDM 3D printing Implants Use of different 3D printing techniques for the development of 
antibiotic-eluting articles 

Tobramycin, gentamicin, and vancomycin / PLA (129) 
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Table III Summary of advantages and limitations of 3D printing technologies 

Technology Advantages Limitations Reference(s) 

Stereolithography (SLA) 
3D printing 

 Submicron sized objects and deci-micron sized 
layers 

 High accuracy and resolution; superior to all other 
3D printing techniques 

  

 Post-printing curing is required  

 Carcinogenic risk of oligomers and limited to a 
number of resins  

 Costly equipment 

 Long printing time* 

(110) 

Powder Based (PB) 3D 
printing 

 Large choice of starting materials  

 A room temperature process 

 More porous matrix as compared to conventional 
tableting with fast disintegrating time 

 Post-printing drying is required  

 The friability and hardness are compromised for 
fast disintegrating tablets  

 Requires a specialized powder facility 

 Significant wastage of powder 

(54, 59, 61, 

85, 111-114, 

130) 

Selective Laser Sintering 
(SLS) 3D printing 

 Internal microstructure and porosity is highly 
controllable and reproducible 

 A single object can be built to contain variable 
porosities and microstructures 

 Post-printing finishing process is are required 

 Limited speed for sinteration  

 High energy input might degrade starting 
material(s)  

(115, 116) 

Fused deposition 
modelling (FDM) 3D 
printing 

 Widely available and low cost printing units 

 No post-printing processes are needed (unless a 
raft is included in the structure) 

 Mechanically resistant product with negligible 
Friability 

 High temperature process might degrade starting 
material(s) 

 Requires preparation of filaments in advance 

 Confined to thermoplastic polymers 

(33, 38, 77, 

78, 117-119) 
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 High drug uniformity 

Extrusion based (EXT) 3D 
Printing 

 A room temperature process  

 Different release patterns in a single tablet  

 Higher drug loading up to 90%  

 Low hardness and high friability  

 Post-printing drying is required  

 Resolution of printing is limited by nozzle size 

 Difficult to control the flow of semi-solids through 
the nozzle 

(81, 83, 84) 

* Continuous layer interface production (CLIP) technology can significantly shorten printing time (51) 
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