23,204 research outputs found
Post-Band Merge Utilities Applied to Spitzer Pleiades Data
Band merging extracted point sources observed in multiple wavelength bands is generally done purely on the basis of positional information in order to avoid photometric biases. Automated merge decisions can be more optimal with better position estimation and more realistic modeling of positional estimation errors. Unfortunately, extraction software often does not provide the most accurate positional information possible, and so post-band merge utilities have been developed and implemented to refine both the source positions and the error modeling. Subsequent band merging of the refined detections improves the completeness and reliability of the multi-band source catalog. Application to Spitzer Space Telescope mapping observations of the Pleiades star cluster demonstrates some aspects of the improved band merging
A mathematical model of plant nutrient uptake
The classical model of plant root nutrient uptake due to Nye. Tinker and Barber is developed and extended. We provide an explicit closed formula for the uptake by a single cylindrical root for all cases of practical interest by solving the absorption-diffusion equation for the soil nutrient concentration asymptotically in the limit of large time. We then use this single root model as a building block to construct a model which allows for root size distribution in a more realistic plant root system, and we include the effects of root branching and growth. The results are compared with previous theoretical and experimental studies
When is a symmetric pin-jointed framework isostatic?
Maxwell's rule from 1864 gives a necessary condition for a framework to be
isostatic in 2D or in 3D. Given a framework with point group symmetry, group
representation theory is exploited to provide further necessary conditions.
This paper shows how, for an isostatic framework, these conditions imply very
simply stated restrictions on the numbers of those structural components that
are unshifted by the symmetry operations of the framework. In particular, it
turns out that an isostatic framework in 2D can belong to one of only six point
groups. Some conjectures and initial results are presented that would give
sufficient conditions (in both 2D and 3D) for a framework that is realized
generically for a given symmetry group to be an isostatic framework.Comment: 24 pages, 10 figures; added references, minor changes, revised last
paragrap
Cross-level Validation of Topological Quantum Circuits
Quantum computing promises a new approach to solving difficult computational
problems, and the quest of building a quantum computer has started. While the
first attempts on construction were succesful, scalability has never been
achieved, due to the inherent fragile nature of the quantum bits (qubits). From
the multitude of approaches to achieve scalability topological quantum
computing (TQC) is the most promising one, by being based on an flexible
approach to error-correction and making use of the straightforward
measurement-based computing technique. TQC circuits are defined within a large,
uniform, 3-dimensional lattice of physical qubits produced by the hardware and
the physical volume of this lattice directly relates to the resources required
for computation. Circuit optimization may result in non-intuitive mismatches
between circuit specification and implementation. In this paper we introduce
the first method for cross-level validation of TQC circuits. The specification
of the circuit is expressed based on the stabilizer formalism, and the
stabilizer table is checked by mapping the topology on the physical qubit
level, followed by quantum circuit simulation. Simulation results show that
cross-level validation of error-corrected circuits is feasible.Comment: 12 Pages, 5 Figures. Comments Welcome. RC2014, Springer Lecture Notes
on Computer Science (LNCS) 8507, pp. 189-200. Springer International
Publishing, Switzerland (2014), Y. Shigeru and M.Shin-ichi (Eds.
Magnetic control assembly qualification model
Fabrication and testing of the magnetic control assembly (MCA) are summarized. The MCA was designed as an add-on unit for certain existing components of the Nimbus and ERTS attitude control system. The MCA system consists of three orthogonal electromagnets; a magnetometer probe capable of sensing external fields in the X, Y, and Z axes; and the control electronics. An operational description of the system is given along with all major drawings and photographs. Manufacturing and inspection procedures are outlined and a chronological list of events is included with the fabrication summary
Surface Code Threshold in the Presence of Correlated Errors
We study the fidelity of the surface code in the presence of correlated
errors induced by the coupling of physical qubits to a bosonic environment. By
mapping the time evolution of the system after one quantum error correction
cycle onto a statistical spin model, we show that the existence of an error
threshold is related to the appearance of an order-disorder phase transition in
the statistical model in the thermodynamic limit. This allows us to relate the
error threshold to bath parameters and to the spatial range of the correlated
errors.Comment: 5 pages, 2 figure
On the Nature of Precursors in the Radio Pulsar Profiles
In the average profiles of several radio pulsars, the main pulse is
accompanied by the preceding component. This so called precursor is known for
its distinctive polarization, spectral, and fluctuation properties. Recent
single-pulse observations hint that the sporadic activity at the extreme
leading edge of the pulse may be prevalent in pulsars. We for the first time
propose a physical mechanism of this phenomenon. It is based on the induced
scattering of the main pulse radiation into the background. We show that the
scattered component is directed approximately along the ambient magnetic field
and, because of rotational aberration in the scattering region, appears in the
pulse profile as a precursor to the main pulse. Our model naturally explains
high linear polarization of the precursor emission, its spectral and
fluctuation peculiarities as well as suggests a specific connection between the
precursor and the main pulse at widely spaced frequencies. This is believed to
stimulate multifrequency single-pulse studies of intensity modulation in
different pulsars.Comment: 5 pages, no figures. Accepted for publication in MNRAS Letter
- …