13,782 research outputs found
Universality of collapsing two-dimensional self-avoiding trails
Results of a numerically exact transfer matrix calculation for the model of
Interacting Self-Avoiding Trails are presented. The results lead to the
conclusion that, at the collapse transition, Self-Avoiding Trails are in the
same universality class as the O(n=0) model of Blote and Nienhuis (or
vertex-interacting self-avoiding walk), which has thermal exponent ,
contrary to previous conjectures.Comment: Final version, accepted for publication in Journal of Physics A; 9
pages; 3 figure
Fibres as shear reinforcement in RC beams: an overview on assessment of material properties and design approaches
It is recognized that understanding at a material level is needed in the development of
rational, physical-mechanical, models for predicting the behaviour of fibre reinforced
concrete at service and strength limit conditions. To this end, understanding the post-cracking
mechanisms of the fibres, and their symbiotic relationship with the cementitious matrix that
surrounds them, is required for the development of realistic modelling approaches that
accurately represent empirical observations. Several experimental test setups and inverse
analysis procedures have been proposed to derive the fundamental stress-crack width (βw)
law, but a consensus still does not exists on the best strategy for its determination. In
structures governed by shear, fibre reinforcement increases the stiffness and shear stress
transfer across a crack, but a methodology to capture the contribution of fibres in this regards
is challenging. To overcome this, a clear strategy is needed in deriving relationships that
simulate fibre reinforcement mechanisms in the mobilized fracture modes and, also, develop
design approaches capable of capturing the relevant contributions of the fibres. This study
firstly reviews current inverse analysis models used to describe the tensile (Model I fracture)
relationship for FRC and, secondly, discusses a newly proposed model, referred to as the
integrated shear model (ISM). The ISM is developed from mesoscale observations from
gamma- and X-ray imaging on FRC elements under Modes I and II fracture conditions. The
resulting model is compared to test data reported in the literature and a good correlation is
observed.The authors wish to acknowledge the grant SFRH/BSAB/114302/2016 provided by FCT
and the Australian Research Council grant DP150104107, as well as the support provided by
the UNSW for the research activities carried out under the status of Visiting Professorial
Fellow for the first author. The support of the FCT through the project PTDC/ECM EST/2635/2014 is also acknowledged
Old Dogs Can Learn to Like New Tricks: One Instructor\u27s Change in Attitude to Online Instruction from 2009-2017
This qualitative case study examined a veteran instructor\u27s change in attitude about university online instruction. After a short review of the literature and explanation of the project, researchers conducted a content analysis of an instructor\u27s annual self-reports about his online teaching of a graduate course in the social sciences. The self-reports were written between 2009 and 2017. The researchers also examined students\u27 end-of-semester evaluation scores about the course and instructor. Results suggest that the teacher began online teaching with a mixed attitude. After four years of teachin ghte online course (delivered once each spring) the instructor reported more about content issues and less about online delivery. In the final the period (2016-17) the researchers found that the instructor was invested fully in online delivery. Although the study is not generalizable, its results suggest that instructors who stay with an online system over an extended period of time may gain more confidence in the efficacy on online delivery. The findings complement previous findings in the literature about faculty attitudes toward technology use in instruction
An integrated approach for predicting the shear capacity of fibre reinforced concrete beams
This paper describes the development of an integrated design approach for determining shear capacity of flexurally reinforced steel fibre reinforced concrete members. The approach considers fibre distribution profile, fibre pull-out resistance and the modified compression field theory integrated using a comprehensive strategy. To assess the performance of the developed model, a database consisting of 122 steel fibre reinforced and prestressed concrete beams failing in shear was assembled from available literature. The model predictions were shown to correlate well with the test data. The performance of the analytical model was also compared to predictions attained by the two approaches recommended by the fib Model Code 2010, one based on an empirical equation and the other on the modified compression field theory approach. The predictive performance of the proposed approach was also assessed by using the Demerit Points Classification (DPC), being the prediction as better as lower is the total penalty points provided by the classification. The model developed in this paper demonstrated a superior performance to those of the Model Code, with a higher predictive performance in terms of safety and reliability.The authors wish to acknowledge the grant SFRH/BSAB/114302/2016 provided by FCT and the Australian Research Council grant DP150104107, as well as the support provided by the UNSW Sydney for the research activities carried out under the status of Visiting Professorial Fellow for the first author. The support of the FCT through the project PTDC/ECM-EST/2635/2014 is also acknowledged.info:eu-repo/semantics/publishedVersio
Stability and Control Characteristics at a Mach Number of 1.97 of an Airplane Configuration Having Two Types of Variable-sweep Wings
Wind tunnel tests of stability and control of variable sweep wing aircraft at Mach 1.9
From Physical to Cyber: Escalating Protection for Personalized Auto Insurance
Nowadays, auto insurance companies set personalized insurance rate based on
data gathered directly from their customers' cars. In this paper, we show such
a personalized insurance mechanism -- wildly adopted by many auto insurance
companies -- is vulnerable to exploit. In particular, we demonstrate that an
adversary can leverage off-the-shelf hardware to manipulate the data to the
device that collects drivers' habits for insurance rate customization and
obtain a fraudulent insurance discount. In response to this type of attack, we
also propose a defense mechanism that escalates the protection for insurers'
data collection. The main idea of this mechanism is to augment the insurer's
data collection device with the ability to gather unforgeable data acquired
from the physical world, and then leverage these data to identify manipulated
data points. Our defense mechanism leveraged a statistical model built on
unmanipulated data and is robust to manipulation methods that are not foreseen
previously. We have implemented this defense mechanism as a proof-of-concept
prototype and tested its effectiveness in the real world. Our evaluation shows
that our defense mechanism exhibits a false positive rate of 0.032 and a false
negative rate of 0.013.Comment: Appeared in Sensys 201
Examining c-di-GMP and possible quorum sensing regulation in Pseudomonas fluorescens SBW25:links between intra and inter-cellular regulation benefits community cooperative activities such as biofilm formation
Bacterial success in colonizing complex environments requires individual response to micro-scale conditions as well as community-level cooperation to produce large-scale structures such as biofilms. Connecting individual and community responses could be achieved by linking the intracellular sensory and regulatory systems mediated by bis-(3β²-5β²)-cyclic dimeric guanosine monophosphate (c-di-GMP) and other compounds of individuals with intercellular quorum sensing (QS) regulation controlling populations. There is growing evidence to suggest that biofilm formation by many pseudomonads is regulated by both intra and intercellular systems, though in the case of the model Pseudomonas fluorescens SBW25 Wrinkly Spreader in which mutations increasing c-di-GMP levels result in the production of a robust cellulose-based air-liquid interface biofilm, no evidence for the involvement of QS regulation has been reported. However, our recent review of the P. fluorescens SBW25 genome has identified a potential QS regulatory pathway and other QSβassociated genes linked to c-di-GMP homeostasis, and QS signal molecules have also been identified in culture supernatants. These findings suggest a possible link between c-di-GMP and QS regulation in P. fluorescens SBW25 which might allow a more sophisticated and responsive control of cellulose production and biofilm formation when colonising the soil and plant-associated environments P. fluorescens SBW25 normally inhabits.ΠΠ½Π°Π»ΠΈΠ· Ρ-Π΄ΠΈ-ΠΠΠ€ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ³ΠΎ ΡΡΠ²ΡΡΠ²Π° ΠΊΠ²ΠΎΡΡΠΌΠ° Ρ Pseudomonas fluorescens SBW 25: ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ Π²Π½ΡΡΡΠΈ ΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΠΊΠΎΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ²Π½ΠΎΠΌΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π² ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π΅ ΠΈ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈΠ£ΡΠΏΠ΅ΡΠ½ΠΎΡΡΡ Π±Π°ΠΊΡΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΡΠΊΠΎΠ½ΠΈΡ ΡΡΠ΅Π±ΡΠ΅Ρ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΠΉ Π½Π° ΠΌΠΈΠΊΡΠΎΡΡΠΎΠ²Π½Π΅ ΡΠ°Π²Π½ΠΎ ΠΊΠ°ΠΊ ΠΈ ΠΊΠΎΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π½Π° ΡΡΠΎΠ²Π½Π΅ ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π° Π΄Π»Ρ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΊΡΡΠΏΠ½ΠΎ ΠΌΠ°ΡΡΡΠ°Π±Π½ΡΡ
ΡΡΡΡΠΊΡΡΡ ΠΊΠ°ΠΊ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈ. ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠΈΡ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΠ²Π΅Ρ ΠΎΠ² ΠΈ ΠΎΡΠ²Π΅ΡΠΎΠ² ΡΠΎΠΎΠ±ΡΠ΅ΡΡΠ²Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠ° ΠΏΡΡΠ΅ΠΌ ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ Π²Π½ΡΡΡΠΈΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΡΠ΅Π½ΡΠΎΡΠ½ΡΡ
ΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΎΠΏΠΎΡΡΠ΅Π΄ΡΠ΅ΠΌΡΡ
Π±ΠΈΡ-(3',5')-ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄ΠΈΠΌΠ΅ΡΠ½ΡΠΌ Π³ΡΠ°Π½ΠΎΠ·ΠΈΠ½ΠΌΠΎΠ½ΠΎΡΠΎΡΡΠ°ΡΠΎΠΌ (Ρ-Π΄ΠΈ-ΠΠΠ€) ΠΈ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΈΠ½Π΄ΠΈΠ²ΠΈΠ΄ΡΡΠΌΠΎΠ² Ρ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ - ΡΡΠ²ΡΡΠ²ΠΎΠΌ ΠΊΠ²ΠΎΡΡΠΌΠ° (Π§Π), ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡΠ΅ΠΌ ΠΏΠΎΠΏΡΠ»ΡΡΠΈ Ρ. ΠΠ°ΠΊΠ°ΠΏΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π²ΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π΄ΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΡΡΠ² ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Π±ΠΈΠΎΠΏΠ»Π΅Π½ΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠΌΠΈ ΠΏΡΠ΅Π²Π΄ΠΎΠΌΠΎΠ½Π°Π΄Π°ΠΌΠΈ ΡΠ΅Π³ΡΠ»ΠΈΡΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ Π²Π½ΡΡΡΠΈ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌΠΈ, ΡΠ°ΠΊ ΠΈ ΠΌΠ΅ΠΆ ΠΊΠ»Π΅ΡΠΎΡΠ½ΡΠΌΠΈ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΌΠΈ ΡΠΈΡΡΠ΅ΠΌΠ°ΠΌΠΈ, Ρ
ΠΎΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΌΠΎΠ΄Π΅Π»ΡΠ½ΠΎΠΉ Pseudomonas fluorescens SBW25 Wrinkly Spreader, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΌΡΡΠ°ΡΠΈΠΈ, ΠΏΠΎΠ²ΡΡΠ°ΡΡ ΠΈΠ΅ ΡΡΠΎΠ²Π½ΠΈ Ρ-Π΄ΠΈ-ΠΠΠ€, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ½ΠΎΠΉ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Π½ΠΎΠΉ Π±ΠΈΠΎΠΏΠ»ΡΠ½ΠΊΠΈ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠ°Π·Π΄Π΅Π»Π° ΡΠ°Π· Π²ΠΎΠ·Π΄ΡΡ
-ΠΆΠΈΠ΄ΠΊΠΎΡΡΡ, Π½Π΅ Π±ΡΠ»ΠΎ ΠΎΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ Π½ΠΈ ΠΊΠ° ΠΊΠΎΠ³ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²Π° Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΊΠ²ΠΎΡΡΠΌ-Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ Π½Π°Ρ Π½Π΅Π΄Π°Π²Π½ΠΈΠΉ ΠΎΠ±Π·ΠΎΡ Π³Π΅Π½ΠΎΠΌΠ° P. fluorescens SBW25 Π²ΡΡΠ²ΠΈΠ» ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ Π§Π-Π·Π°Π²ΠΈΡΠΈΠΌΡΠΉ ΡΠ΅Π³ΡΠ»ΡΡΠΎΡΠ½ΡΠΉ ΠΏΡ ΡΡ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π§Π-Π·Π°Π²ΠΈΡΠΈΠΌΡΠ΅ Π³Π΅Π½Ρ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ Π³ΠΎΠΌΠ΅ΠΎΡΡΠ°Π·ΠΎΠΌ Ρ-Π΄ΠΈ-ΠΠΠ€, Π° ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π§Π-ΡΠΈΠ³Π½Π°Π»ΠΈΠ½Π³Π° Π±ΡΠ»ΠΈ ΠΈΠ΄Π΅Π½ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Ρ Π² ΠΊΡΠ»ΡΡΡΡΠ΅. ΠΡΠΈ Π΄Π°Π½Π½ΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Ρ-Π΄ΠΈ-ΠΠΠ€-ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ΅ΠΉ ΠΈ Π§Π Ρ P. fluorescens SBW25, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ ΡΠ»ΠΎΠΆΠ½ΡΠΉ ΠΈ Π³ΠΈΠ±ΠΊΠΈΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ Π½Π°Π΄ ΠΏΡΠΎΠ΄ΡΠΊΡΠΈΠ΅ΠΉ ΡΠ΅Π»Π»ΡΠ»ΠΎΠ·Ρ ΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈ Π΅ΠΌ Π±ΠΈΠΎΠΏΠ»Π΅Π½ΠΊΠΈ ΠΏΡΠΈ ΠΊΠΎΠ»ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ ΠΏΠΎΡΠ² ΠΈ ΡΠΊΠΎΠ½ΠΈΡ, aΡΡΠΎΡΠΈΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
Ρ ΡΠ°ΡΡΠ΅Π½ΠΈΡΠΌ ΠΈ, - Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠΌΠΈ ΡΡΠ΅Π΄Π°ΠΌΠΈ ΠΎΠ±ΠΈΡΠ°Π½ΠΈΡ P. fluorescens SBW25
Surface critical behaviour of the Interacting Self-Avoiding Trail on the square lattice
The surface critical behaviour of the interacting self-avoiding trail is
examined using transfer matrix methods coupled with finite-size scaling.
Particular attention is paid to the critical exponents at the ordinary and
special points along the collapse transition line. The phase diagram is also
presented.Comment: Journal of Physics A (accepted
Sheared bioconvection in a horizontal tube
The recent interest in using microorganisms for biofuels is motivation enough
to study bioconvection and cell dispersion in tubes subject to imposed flow. To
optimize light and nutrient uptake, many microorganisms swim in directions
biased by environmental cues (e.g. phototaxis in algae and chemotaxis in
bacteria). Such taxes inevitably lead to accumulations of cells, which, as many
microorganisms have a density different to the fluid, can induce hydrodynamic
instabilites. The large-scale fluid flow and spectacular patterns that arise
are termed bioconvection. However, the extent to which bioconvection is
affected or suppressed by an imposed fluid flow, and how bioconvection
influences the mean flow profile and cell transport are open questions. This
experimental study is the first to address these issues by quantifying the
patterns due to suspensions of the gravitactic and gyrotactic green
biflagellate alga Chlamydomonas in horizontal tubes subject to an imposed flow.
With no flow, the dependence of the dominant pattern wavelength at pattern
onset on cell concentration is established for three different tube diameters.
For small imposed flows, the vertical plumes of cells are observed merely to
bow in the direction of flow. For sufficiently high flow rates, the plumes
progressively fragment into piecewise linear diagonal plumes, unexpectedly
inclined at constant angles and translating at fixed speeds. The pattern
wavelength generally grows with flow rate, with transitions at critical rates
that depend on concentration. Even at high imposed flow rates, bioconvection is
not wholly suppressed and perturbs the flow field.Comment: 19 pages, 9 figures, published version available at
http://iopscience.iop.org/1478-3975/7/4/04600
- β¦