3 research outputs found

    Development of nanotechnology-based drug delivery systems with olive vegetable oil for cutaneous application

    Get PDF
    ABSTRACT Liquid-Crystalline Systems represent active compounds delivery systems that may be able to overcome the physical barrier of the skin, especially represented by the stratum corneum. To obtain these systems, aqueous and oily components are used with surfactants. Of the different association structures in such systems, the liquid-crystalline offer numerous advantages to a topical product. This manuscript presents the development of liquid-crystalline systems consisting, in which the oil component is olive oil, its rheological characterizations, and the location of liquid crystals in its phase map. Cytotoxic effects were evaluated using J-774 mouse macrophages as the cellular model. A phase diagram to mix three components with different proportions was constructed. Two liquid crystalline areas were found with olive oil in different regions in the ternary diagram with two nonionic surfactants, called SLC1 (S1) and SLC2 (S2). These systems showed lamellar liquid crystals that remained stable during the entire analysis time. The systems were also characterized rheologically with pseudoplastic behavior without thixotropy. The texture and bioadhesion assays showed that formulations were similar statistically (p < 0.05), indicating that the increased amount of water in S2 did not interfere with the bioadhesive properties of the systems. In vitro cytotoxic assays showed that formulations did not present cytotoxicity. Olive oil-based systems may be a promising platform for skin delivery of drugs

    Validation of high-performance liquid chromatographic method for analysis of fluconazole in microemulsions and liquid crystals

    No full text
    In recent decades, there has been a significant increase in the incidence of fungal diseases. Certain fungal diseases cause cutaneous lesions and in the usual treatment, generally administred orally, the drug reaches the site of action with difficulty and its concentration is too low. An approach much explored in recent years is the development of nanotechnology-based drug delivery systems, and microemulsions (ME) and liquid crystals (LC) are promising. ME and LC were developed with oleic acid or copaiba oil as the oil phase, propoxyl (5OP) ethoxyl (20 OE) cetyl alcohol as surfactant and water. An analytical method to assess the incorporation of fluconazole (FLU) in the systems under study was validated according to guidelines of the International Conference on Harmonization (ICH) guidelines and the Brazilian Food, Drug and Sanitation Agency (ANVISA). The method was conducted on a C18-RP column (250 × 4.6 mm i.d.), maintained at room temperature. The mobile phase consisted of acetonitrile and water (50:50, v/v), run at a flow rate of 1.0mL/min and using ultraviolet detection at 210nm. The chromatographic separation was obtained with a retention time of 6.3min, and was linear in the range of 20-400 µg/mL (r2=0.9999). The specificity showed no interference of the excipients. The accuracy was 100.76%. The limits of detection and quantitation were 0.057 and 0.172 µg.mL-1, respectively. Moreover, method validation demonstrated satisfactory results for precision and robustness. The proposed method was applied for the analysis of the incorporation of FLU in ME and LC, contributing to improve the quality control and to assure the therapeutic efficacy

    Quercetin: a flavonoid with the potential to treat asthma

    No full text
    Allergic asthma is a complex inflammatory disorder characterized by airway hyperresponsiveness, eosinophilic inflammation and hypersecretion of mucus. Current therapies include &#946;2-agonists, cysteinyl leukotriene receptor 1 antagonists and corticosteroids. Although these drugs demonstrate beneficial effects, their adverse side effects limit their long-term use. Thus, the development of new compounds with similar therapeutic activities and reduced side effects is both desirable and necessary. Natural compounds are used in some current therapies, as plant-derived metabolites can relieve disease symptoms in the same manner as allopathic medicines. Quercetin is a flavonoid that is naturally found in many fruits and vegetables and has been shown to exert multiple biological effects in experimental models, including the reduction of major symptoms of asthma: bronchial hyperactivity, mucus production and airway inflammation. In this review, we discuss results from the literature that illustrate the potential of quercetin to treat asthma and its exacerbations.A asma alérgica é uma doença inflamatória complexa caracterizada por hiperresponsividade das vias aéreas, inflamação eosinofílica e hipersecreção de muco. As terapias atuais incluem &#946;2-agonistas, antagonistas do receptor 1 de cisteinil leucotrienos e corticosteróides. Embora estes fármacos demonstrem efeitos benéficos, seus efeitos adversos limitam seus usos a longo prazo. Assim, o desenvolvimento de novos compostos com atividades terapêuticas similares e reduzido efeitos adversos é tanto desejável quanto necessário. Compostos naturais podem ser utilizados nas terapias atuais, uma vez que metabólitos derivados de plantas são capazes de aliviar os sintomas de forma comparável aos medicamentos alopáticos. A quercetina é um flavonóide que ocorre naturalmente em muitas frutas e vegetais e tem mostrado vários efeitos biológicos, principalmente em modelos experimentais, incluindo a redução dos principais fenótipos da asma: hiperreatividade brônquica, produção de muco e inflamação das vias aéreas. Nesta revisão, nós discutimos os resultados da literatura que revelam o potencial da quercetina para tratar a asma e suas exacerbações
    corecore