14,286 research outputs found

    New calculation schemes for proton-deuteron scattering including the Coulomb interaction

    Full text link
    The Coulomb interaction between the protons is included in the description of proton-deuteron scattering using the screening and renormalization approach in the framework of momentum-space integral equations. Two new calculational schemes are presented that confirm the reliability of the perturbative approach for treating the screened Coulomb interaction in high partial waves, used by us in earlier works.Comment: To be published in Phys. Rev.

    Coherent photon assisted cotunneling in a Coulomb blockade device

    Full text link
    We study cotunneling in a double junction Coulomb blockade device under the influence of time dependent potentials. It is shown that the ac-bias leads to photon assisted cotunneling which in some cases may dominate the transport. We derive a general non-perturbative expression for the tunneling current in the presence of oscillating potentials and give a perturbative expression for the photon assisted cotunneling current.Comment: Replaced with a longer paper which includes a non-perturbative calculation. 13 pages with 1 figure. To be published in Physical Review

    Benchmark calculation for proton-deuteron elastic scattering observables including Coulomb

    Full text link
    Two independent calculations of proton-deuteron elastic scattering observables including Coulomb repulsion between the two protons are compared in the proton lab energy region between 3 MeV and 65 MeV. The hadron dynamics is based on the purely nucleonic charge-dependent AV18 potential. Calculations are done both in coordinate space and momentum space. The coordinate-space calculations are based on a variational solution of the three-body Schr\"odinger equation using a correlated hyperspherical expansion for the wave function. The momentum-space calculations proceed via the solution of the Alt-Grassberger-Sandhas equation using the screened Coulomb potential and the renormalization approach. Both methods agree within 1% on all observables, showing the reliability of both numerical techniques in that energy domain. At energies below three-body breakup threshold the coordinate-space method remains favored whereas at energies higher than 65 MeV the momentum-space approach seems to be more efficient.Comment: Submitted to Phys. Rev.

    Measurement of Magnetic-Field Structures in a Laser-Wakefield Accelerator

    Full text link
    Experimental measurements of magnetic fields generated in the cavity of a self-injecting laser-wakefield accelerator are presented. Faraday rotation is used to determine the existence of multi-megagauss fields, constrained to a transverse dimension comparable to the plasma wavelength and several plasma wavelengths longitudinally. The fields are generated rapidly and move with the driving laser. In our experiment, the appearance of the magnetic fields is correlated to the production of relativistic electrons, indicating that they are inherently tied to the growth and wavebreaking of the nonlinear plasma wave. This evolution is confirmed by numerical simulations, showing that these measurements provide insight into the wakefield evolution with high spatial and temporal resolution

    An attempt to observe economy globalization: the cross correlation distance evolution of the top 19 GDP's

    Full text link
    Economy correlations between the 19 richest countries are investigated through their Gross Domestic Product increments. A distance is defined between increment correlation matrix elements and their evolution studied as a function of time and time window size. Unidirectional and Bidirectional Minimal Length Paths are generated and analyzed for different time windows. A sort of critical correlation time window is found indicating a transition for best observations. The mean length path decreases with time, indicating stronger correlations. A new method for estimating a realistic minimal time window to observe correlations and deduce macroeconomy conclusions from such features is thus suggested.Comment: to be published in the Dyses05 proceedings, in Int. J. Mod Phys C 15 pages, 5 figures, 1 tabl

    Endemic fish calling: Acoustics and reproductive behaviour of the Neretva dwarf goby Orsinigobius croaticus

    Get PDF
    The Neretva dwarf goby Orsinigobius croaticus (Gobiiformes, Gobionellidae) is an endemic fish native to the freshwaters of the Adriatic Basin in Croatia and Bosnia and Herzegovina, a Mediterranean Biodiversity Hotspot. Due to its limited distribution range, specific karst habitat and endangered status, laboratory studies on reproductive biology are scarce but crucial. Herein, we investigated the sound production and acoustic behaviour of the endangered O. croaticus during reproductive intersexual laboratory encounters, utilising an interdisciplinary approach. We also performed dissections and micro-computed tomography (ÎĽCT) scanning of the pectoral girdle to explore its potential involvement in sound production. Finally, comparative acoustic analysis was conducted on sounds produced by previously recorded soniferous sand gobies to investigate whether acoustic features are species-specific. The endemic O. croaticus is a soniferous species. Males of this species emit pulsatile sounds composed of a variable number of short (~15 ms) consecutive pulses when interacting with females, usually during the pre-spawning phase in the nest, but also during courtship outside the nest. Pulsatile sounds were low-frequency and short pulse trains (~140 Hz, <1000 ms). Male visual behaviour rate was higher when co-occurring with sounds and females entered the male's nest significantly more frequently when sounds were present. Characteristic body movements accompanied male sound production, such as head thrust and fin spreading. Furthermore, ÎĽCT scans and dissections suggest that O. croaticus shares certain anatomical similarities of the pectoral girdle (i.e. osseous elements and arrangement of levator pectoralis muscles) to previously studied sand gobies that could be involved in sound production. Multivariate comparisons, using sounds produced by eight soniferous European sand gobies, effectively distinguished soniferous (and sympatric) species based on their acoustic properties. However, the discrimination success decreased when temperature-dependent features (sound duration and pulse repetition rate) were excluded from the analysis. Therefore, we suggest both spectral and temporal features are important for the acoustic differentiation of sand gobies
    • …
    corecore