17,251 research outputs found

    Estudio de caso: Evaluacion de impacto de la intervencion del proyecto INCOPA en Puno.

    Get PDF

    A global simulation for laser driven MeV electrons in 50μm50\mu m-diameter fast ignition targets

    Full text link
    The results from 2.5-dimensional Particle-in-Cell simulations for the interaction of a picosecond-long ignition laser pulse with a plasma pellet of 50-μm\mu m diameter and 40 critical density are presented. The high density pellet is surrounded by an underdense corona and is isolated by a vacuum region from the simulation box boundary. The laser pulse is shown to filament and create density channels on the laser-plasma interface. The density channels increase the laser absorption efficiency and help generate an energetic electron distribution with a large angular spread. The combined distribution of the forward-going energetic electrons and the induced return electrons is marginally unstable to the current filament instability. The ions play an important role in neutralizing the space charges induced by the the temperature disparity between different electron groups. No global coalescing of the current filaments resulted from the instability is observed, consistent with the observed large angular spread of the energetic electrons.Comment: 9 pages, 6 figures, to appear in Physics of Plasmas (May 2006

    Benchmark calculation of p-3H and n-3He scattering

    Get PDF
    p-3H and n-3He scattering in the energy range above the n-3He but below the d-d thresholds is studied by solving the 4-nucleon problem with a realistic nucleon-nucleon interaction. Three different methods -- Alt, Grassberger and Sandhas, Hyperspherical Harmonics, and Faddeev-Yakubovsky -- have been employed and their results for both elastic and charge-exchange processes are compared. We observe a good agreement between the three different methods, thus the obtained results may serve as a benchmark. A comparison with the available experimental data is also reported and discussed.Comment: 13 pages, 6 figures. arXiv admin note: text overlap with arXiv:1109.362

    Improved thermal isolation of silicon suspended platforms for an all-silicon thermoelectric microgenerator based on large scale integration of Si nanowires as thermoelectric material

    Get PDF
    Special suspended micro-platforms have been designed as a part of silicon compatible planar thermoelectric microgenerators. Bottom-up grown silicon nanowires are going to bridge in the future such platforms to the surrounding silicon bulk rim. They will act as thermoelectric material thus configuring an all-silicon thermoelectric device. In the new platform design other additional bridging elements (usually auxiliary support silicon beams) are substituted by low conductance thin film dielectric membranes in order to maximize the temperature difference developed between both areas. These membranes follow a sieve-like design that allows fabricating them with a short additional wet anisotropic etch step. © Published under licence by IOP Publishing Ltd.Peer ReviewedPostprint (published version

    Beam loading in the nonlinear regime of plasma-based acceleration

    Full text link
    A theory that describes how to load negative charge into a nonlinear, three-dimensional plasma wakefield is presented. In this regime, a laser or an electron beam blows out the plasma electrons and creates a nearly spherical ion channel, which is modified by the presence of the beam load. Analytical solutions for the fields and the shape of the ion channel are derived. It is shown that very high beam-loading efficiency can be achieved, while the energy spread of the bunch is conserved. The theoretical results are verified with the Particle-In-Cell code OSIRIS.Comment: 5 pages, 2 figures, to appear in Physical Review Letter

    Multiple scattering effects in quasi free scattering from halo nuclei: a test to Distorted Wave Impulse Approximation

    Full text link
    Full Faddeev-type calculations are performed for 11^{11}Be breakup on proton target at 38.4, 100, and 200 MeV/u incident energies. The convergence of the multiple scattering expansion is investigated. The results are compared with those of other frameworks like Distorted Wave Impulse Approximation that are based on an incomplete and truncated multiple scattering expansion.Comment: 7 pages, 16 figures, to be published in Phys. Rev.

    Three-body description of direct nuclear reactions: Comparison with the continuum discretized coupled channels method

    Full text link
    The continuum discretized coupled channels (CDCC) method is compared to the exact solution of the three-body Faddeev equations in momentum space. We present results for: i) elastic and breakup observables of d-12C at E_d=56 MeV, ii) elastic scattering of d-58Ni at E_d=80 MeV, and iii) elastic, breakup and transfer observables for 11Be+p at E_{11Be}/A=38.4 MeV. Our comparative studies show that, in the first two cases, the CDCC method is a good approximation to the full three-body Faddeev solution, but for the 11Be exotic nucleus, depending on the observable or the kinematic regime, it may miss out some of the dynamic three-body effects that appear through the explicit coupling to the transfer channel.Comment: 12 pages, 10 figures, accepted for publication in Physical Review
    corecore