46 research outputs found

    Fractal Analysis Reveals Reduced Complexity of Retinal Vessels in CADASIL

    Get PDF
    The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D), a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD) was lower than control (1.50±0.04; p = 0.002). Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients

    Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering

    Get PDF
    Perivascular Spaces (PVS) are a recently recognised feature of Small Vessel Disease (SVD), also indicating neuroinflammation, and are an important part of the brain's circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS from MRI. Based on prior knowledge from neuroradiological ratings of PVS, we used ordered logit models to optimise Frangi filter parameters in response to the variability in the scanner's parameters and study protocols. We optimized and validated our proposed models on two independent cohorts, a dementia sample (N=20) and patients who previously had mild to moderate stroke (N=48). Results demonstrate the robustness and generalisability of our segmentation method. Segmentation-based PVS burden estimates correlated with neuroradiological assessments (Spearman's ρ\rho = 0.74, p << 0.001), suggesting the great potential of our proposed metho

    Retinal arteriolar geometry is associated with cerebral white matter hyperintensities on MRI

    Get PDF
    Background. Cerebral small vessel disease (lacunar stroke and cerebral white matter hyperintensities) is caused by vessel abnormalities of unknown aetiology. Retinal vessels show developmental and pathophysiological similarities to cerebral small vessels and microvessel geometry may influence vascular efficiency. Hypothesis. We hypothesized that retinal arteriolar branching angles or co-efficients (the ratio of the sum of the cross sectional areas of the two daughter vessels to the cross sectional area of the parent vessel at an arteriolar bifurcation) may be associated with cerebral small vessel disease. Methods. We performed a cross-sectional observational study in a tertiary referral hospital, United Kingdom. An experienced stroke physician recruited consecutive patients presenting with lacunar ischaemic stroke with a control group consisting of patients with minor cortical ischaemic stroke. We performed brain magnetic resonance imaging to assess the recent infarct and periventricular and deep white matter hyperintensities. We subtyped stroke with clinical and radiological findings. We took digital retinal photography to assess retinal arteriolar branching co-efficients and branching angles using a semi-automated technique. Results. We recruited 205 patients (104 lacunar stroke, 101 cortical stroke), mean age 68 (Standard Deviation 12) years. With multivariate analysis, increased branching coefficient was associated with periventricular white matter hyperintensities (p=0.006) and ischaemic heart disease (p<0.001); decreased branching co-efficient with deep white matter hyperintensities (p=0.003) but not with lacunar stroke subtype (p=0.96). We found no associations with retinal branching angles. Conclusions. Retinal arteriolar geometry differs between cerebral small vessel phenotypes. More research is needed to ascertain the clinical significance of these findings

    Urinary Proteomics to Support Diagnosis of Stroke

    Get PDF
    Accurate diagnosis in suspected ischaemic stroke can be difficult. We explored the urinary proteome in patients with stroke (n = 69), compared to controls (n = 33), and developed a biomarker model for the diagnosis of stroke. We performed capillary electrophoresis online coupled to micro-time-of-flight mass spectrometry. Potentially disease-specific peptides were identified and a classifier based on these was generated using support vector machine-based software. Candidate biomarkers were sequenced by liquid chromatography-tandem mass spectrometry. We developed two biomarker-based classifiers, employing 14 biomarkers (nominal p-value <0.004) or 35 biomarkers (nominal p-value <0.01). When tested on a blinded test set of 47 independent samples, the classification factor was significantly different between groups; for the 35 biomarker model, median value of the classifier was 0.49 (−0.30 to 1.25) in cases compared to −1.04 (IQR −1.86 to −0.09) in controls, p<0.001. The 35 biomarker classifier gave sensitivity of 56%, specificity was 93% and the AUC on ROC analysis was 0.86. This study supports the potential for urinary proteomic biomarker models to assist with the diagnosis of acute stroke in those with mild symptoms. We now plan to refine further and explore the clinical utility of such a test in large prospective clinical trials

    Impact of small vessel disease in the brain on gait and balance

    Get PDF
    Gait and balance impairment is highly prevalent in older people. We aimed to assess whether and how single markers of small vessel disease (SVD) or a combination thereof explain gait and balance function in the elderly. We analysed 678 community-dwelling healthy subjects from the Lothian Birth Cohort 1936 at the age of 71–74 years who had undergone comprehensive risk factor assessment, gait and balance assessment as well as brain MRI. We investigated the impact of individual SVD markers (white matter hyperintensity – WMH, microbleeds, lacunes, enlarged perivascular spaces, brain atrophy) as seen on structural brain MRI and of a global SVD score on the patients’ performance. A regression model revealed that age, sex, and hypertension significantly explained gait speed. Among SVD markers white matter hyperintensity (WMH) score or volume were additional significant and independent predictors of gait speed in the regression model. A similar association was seen with the global SVD score. Our study confirms a negative impact of SVD-related morphologic brain changes on gait speed in addition to age, sex and hypertension independent from brain atrophy. The presence of WMH seems to be the major driving force for SVD on gait impairment in healthy elderly subjects

    Statin use is not associated with future long-term care admission - extended follow-up of two randomised controlled trials

    Get PDF
    Background: Statins have been associated with later life, long-term care admission in observational studies. However, by preventing vascular events, statins may also prevent or delay admission. We wished to determine statin and long-term care admission associations in a randomised controlled trial context, and describe associations between long-term care admission and other clinical and demographic factors. Methods: We used extended follow-up of two randomised trial populations, using national data to assign the long-term care admission outcome, and included individuals screened or recruited to two large randomised trials of pravastatin 40 mg daily—the West of Scotland Coronary Prevention Study (WOSCOPS) and the pravastatin in elderly individuals at risk of vascular disease (PROSPER) study. We described univariable and multivariable analyses of potential predictors of long-term care admission with corresponding survival curves of incident long-term care admission and analyses adjusted for competing risk. Results: In total 11,015 (10%) of the trial participants were admitted to long-term care. There was no difference between participants in the statin or placebo arms of either trial in regard to admissions to long-term care. On multivariable analyses, independent associations with incident long-term care admission in the PROSPER trial were age (hazard ratio [HR] 1.06 per year, 95% confidence interval [CI] 1.03–1.09) and male sex (HR 0.72, 95% CI 0.53–0.99). In the WOSCOPS, age (HR 1.12 per year, 95% CI 1.10–1.13) and increasing social deprivation (HR 1.05, 95% CI 1.03–1.08) were associated with incident long-term care admission. Conclusion: We did not demonstrate an association between historical statin use and future long-term care admission. The strongest associations with incident long-term care admission were non-modifiable factors of age, sex and socioeconomic deprivation

    Grading fluorescein angiograms in malarial retinopathy

    Get PDF
    This work was funded by The Wellcome Trust (IJCM, SPH, NAVB, MEM, DP, SoL: Grant No. 092668/Z/10/Z; Core Grant No. 084679/Z/08/Z).Background: Malarial retinopathy is an important finding in Plasmodium falciparum cerebral malaria, since it strengthens diagnostic accuracy, predicts clinical outcome and appears to parallel cerebral disease processes. Several angiographic features of malarial retinopathy have been described, but observations in different populations can only be reliably compared if consistent methodology is used to capture and grade retinal images. Currently no grading scheme exists for fluorescein angiographic features of malarial retinopathy. Methods: A grading scheme for fluorescein angiographic images was devised based on consensus opinion of clinicians and researchers experienced in malarial retinopathy in children and adults. Dual grading were performed with adjudication of admission fluorescein images from a large cohort of children with cerebral malaria. Results: A grading scheme is described and standard images are provided to facilitate future grading studies. Inter-grader agreement was >70 % for most variables. Intravascular filling defects are difficult to grade and tended to have lower inter-grader agreement (>57 %) compared to other features. Conclusions: This grading scheme provides a consistent way to describe retinal vascular damage in paediatric cerebral malaria, and can facilitate comparisons of angiographic features of malarial retinopathy between different patient groups, and analysis against clinical outcomes. Inter-grader agreement is reasonable for the majority of angiographic signs. Dual grading with expert adjudication should be used to maximize accuracy.Publisher PDFPeer reviewe

    The restorative role of annexin A1 at the blood–brain barrier

    Get PDF
    Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS vasculature, and its potential for repairing blood–brain barrier damage in disease and aging
    corecore