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Perivascular Spaces Segmentation 
in Brain MRI Using Optimal 3D 
Filtering
Lucia Ballerini  1, Ruggiero Lovreglio2, Maria del C. Valdés Hernández1, Joel Ramirez  3, 
Bradley J. MacIntosh3, Sandra E. Black3 & Joanna M. Wardlaw  1

Perivascular Spaces (PVS) are a feature of Small Vessel Disease (SVD), and are an important part of 
the brain’s circulation and glymphatic drainage system. Quantitative analysis of PVS on Magnetic 
Resonance Images (MRI) is important for understanding their relationship with neurological diseases. In 
this work, we propose a segmentation technique based on the 3D Frangi filtering for extraction of PVS 
from MRI. We used ordered logit models and visual rating scales as alternative ground truth for Frangi 
filter parameter optimization and evaluation. We optimized and validated our proposed models on two 
independent cohorts, a dementia sample (N = 20) and patients who previously had mild to moderate 
stroke (N = 48). Results demonstrate the robustness and generalisability of our segmentation method. 
Segmentation-based PVS burden estimates correlated well with neuroradiological assessments 
(Spearman’s ρ = 0.74, p < 0.001), supporting the potential of our proposed method.

Perivascular spaces (PVS), also known as Virchow-Robin spaces, are fluid-filled spaces that follow the typical 
course of cerebral penetrating vessels. PVS have the same Magnetic Resonance Imaging (MRI) contrast charac-
teristics as Cerebrospinal Fluid (CSF), that is they appear hypointense (dark) on T1-weighted (T1) and hyperin-
tense (bright) on T2-weighted images (T2)1,2. They appear as small 3D tubular structures that, depending on the 
viewing plane, are linear or round, with a diameter generally smaller than 3 mm3 (see Fig. 1).

Enlargement of perivascular spaces is associated with other morphological features of Small Vessel Disease 
(SVD) such as white matter hyperintensities and lacunes4; cognitive impairment5 and inflammation6. Most stud-
ies use visual rating scales to assess PVS burden7,8, but these are prone to inter-observer variability, particularly 
in the Centrum Semiovale, due to the coexistence of PVS with other neuroradiological features of SVD that con-
found their identification in this region7.

Efforts have been made to computationally assess PVS3,9. Recent semi-automatic methods are based on 
thresholding and require user intervention either for the choice of parameters or for manual editing of the result-
ing masks, which, for small and frequent features such as PVS, risks introducing inter-observer variability and is 
very time consuming10,11. A promising approach proposed for PVS automatic segmentation uses the Frangi filter12 
parameterised through a Random Forest scheme13 that learns discriminative PVS characteristics from manually 
segmented ground truth on MR images acquired at 7 T14–16. However, MRI in clinical research and practice is 
mostly performed in scanners with field strengths at 1.5 T or 3 T, and the reference standards available are visual 
ratings performed by neuroradiologists, which restricts the learning-based approach proposed by Park et al.15 in 
practice. Moreover, it is difficult to assess enlarged PVS burden at high field 7 T MRI since normal PVS and deep 
medullary veins with similar intensities to PVS confound visualization and requires observer correction.

Our current goal is to present a segmentation approach for enlarged PVS that can be used widely in current 
clinical research studies, to further elucidate their pathological significance and assess their potential role in neu-
rological disorders. The main innovation of this paper is a method for optimization and evaluation of the filter in 
absence of ground truth segmentation. In other words, this method allows to use labels requiring little annotation 
effort to derive much finer results (pixel-wise segmentation).
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We propose a novel application of ordered logit models, usually used in statistics as a regression model for 
ordinal dependent variables, as this model provides a good estimate for capturing the sources of influence that 
explain the ordinal dependent variables (i.e. in this case the PVS visual rating scores) considering the uncertainty 
(i.e. subjectivity, inter-observer variability) in the measurement of such data17. We use this model to estimate the 
parameters of the Frangi filter12 to obtain the maximum likelihood of a vessel-like structure to be a PVS in the 
Centrum Semiovale, by also estimating the count of PVS that most likely falls in the class corresponding to the 
category given by the neuroradiologist in this brain region.

We calibrated different ordered logit models, according to the rating scale available for every dataset. We opti-
mized the parameters of the Frangi filter to deal with T1-weighted (T1W) and T2-weighted (T2W) modalities, 
and combined the resulting filtered images. Validation was carried out on different cohorts, using images acquired 
in 2 different sites, rated by 3 different raters.

Materials
Two datasets were used for developing, testing and validating the method:

 1. Sunnybrook Dementia Study (SDS): a large registered ongoing longitudinal clinical trial conducted at Sun-
nybrook Health Science Centre, Toronto, Canada (ClinicalTrials.gov NCT01800214). The study has been 
approved by the Sunnybrook Research Ethics Board in accordance with the principles expressed in the 
Declaration of Helsinki. Each patient provided informed consent. Patients had an historical profile typical 
of Alzheimer’s disease (AD). Full study details have been published previously10.

 2. Mild Stroke Study (MSS): a study conducted at Centre for Clinical Brain Science, Edinburgh, UK. Patients 
had clinical features of lacunar or mild cortical stroke. All experimental protocols were approved by the 
Lothian Ethics of Medical Research Committee (REC 09/81101/54) and the NHS Lothian R + D Office 
(2009/W/NEU/14) and conducted according to the principles expressed in the Declaration of Helsinki. All 
patients gave written informed consent. The MRI protocol has been published elsewhere18.

The characteristics of the sequences relevant for PVS assessment are summarized in Table 1.

Methods
Observing the vessel-like structure of PVS, we propose a segmentation technique based on the 3D Frangi filter-
ing12, largely used for enhancing blood vessels, for instance in retinal images19. Given the absence of an accurate 
computational “ground truth” (i.e. manual labels of each PVS by experts), we propose a modelling technique to 

Figure 1. Magnified view of PVS in an axial, coronal and sagittal slice in T1-weighted and T2-weighted MR 
images. The position of these zooms in corresponding T1-weighted brain scans is highlighted with yellow 
squares (bottom row).
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use the available information (i.e. PVS burden assessed using visual rating scales) to optimize the filter parame-
ters. For this scope, an ordered logit model17 has been used to simulate the relationship between the number of 
PVS and the rating categories, taking into account the uncertainty in the measurements. The framework of the 
proposed optimization process is illustrated in Fig. 2.

PVS assessment. PVS masks, obtained as described in Ramirez et al.10, were available for the SDS dataset. 
These masks obtained using Lesion Explorer20, which implements 2 false positive minimization strategies: (i) in 
order to reduce errors from minor imaging artifacts and improve differentiation from lacunar infarcts, candidate 
PVS are required to satisfy acceptance criteria from both T1W and T2W, and rejection criteria from PD, and (ii) 
to address potential registration errors and partial volume effects, the cortical Gray Matter segmentation was 
dilated by 1 voxel. This resulted in a relatively conservative estimate of the overall PVS burden and thus, limited 
its utility as a Ground Truth (GT) for segmentation optimization, as well as for pixel-wise evaluation of the results.

Two established visual rating scales for PVS severity were used in the present work. Previous work has demon-
strated their comparability7,10.

The visual rating scale developed by Potter et al.7 (in the following called Wardlaw scale) required users to 
rate PVS burden on T2-weighted MRI in each of three major anatomical brain regions: midbrain, basal gan-
glia and centrum semiovale. According to the online user guide (http://www.sbirc.ed.ac.uk/documents/
epvs-rating-scale-user-guide.pdf), PVS in the latter region should be assessed in the slice and hemisphere with 
the highest number, and rated as 0 (no PVS), 1 (mild; 1–10 PVS), 2 (moderate; 11–20 PVS), 3 (frequent; 21–40 
PVS) or 4 (severe; >40 PVS).

The PVS scores proposed by Patankar et al.21 were based principally on the appearances seen on T1W inver-
sion recovery images. PVS should be scored in the centrum semiovale as 0 (none), 1 (less than five per side), 2 
(more than five on one or both sides), reflecting the lesser visibility of PVS on T1W.

Study/
parameters Matrix Voxel size (mm3) TE (ms) TR (ms) flip angle FOV (cm) bandwidth (KHz) Acq. time (min)

SDS
T1 256 × 256 × 124 0.86 × 0.86 × 1.4 5 35 35° 22 31.26 11

T2/PD* 256 × 256 × 58 0.78 × 0.78 × 3 30/80 3000 90° 20 11.36 12

MSS

T1 256 × 216 × 256 1.02 × 0.9 × 1.02 14 400 — 24 15.63 0.54

T2 384 × 224 × 28 0.47 × 0.47 × 6 90 6000 — 24 50 2.30

T2cube 512 × 512 × 256 0.47 × 0.47 × 0.7 143 3000 — 24 31.25 3.55

Table 1. Characteristics of the relevant MRI sequences of (1) Sunnybrook Dementia Study (SDS)10, and (2) 
Mild Stroke Study (MSS)18. *PD = proton density (interleaved), available in SDS.

Figure 2. Framework of the proposed optimization approach: Frangi filter parameters (smin, smax) and 
thresholds (t1, t2) are optimized with order logit models and visual rating scales.

http://www.sbirc.ed.ac.uk/documents/epvs-rating-scale-user-guide.pdf
http://www.sbirc.ed.ac.uk/documents/epvs-rating-scale-user-guide.pdf
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Two slightly modified versions of these rating methods, as previously described10, were also used in this work. 
Coregistered MRIs were used for assessment, with T2W for primary identification, T1W for confirmation, and 
Proton Density (PD) for rejection as required. To reduce ceiling effects and account for a greater range of PVS, the 
Patankar scale was standardized: 0 (none), 1 (one to five), 2 (six to ten), 3 (eleven to fifteen), 4 (sixteen or more). 
To reduce double-counting, a slice increment of 3 was implemented as a standardized rating protocol. Centrum 
Semiovale was defined as the White Matter (WM) projections superior to the ventricles, present in each of the 
cerebral hemispheres under the cerebral cortex.

PVS were assessed in 20 representative cases of the SDS dataset by three raters: two experienced neuroradi-
ologists using the two modified Wardlaw and Patankar visual rating scales, and a third rater strictly following 
the guideline of the original Wardlaw7 and Patankar21 rating methods. The two ratings (modified Wardlaw and 
Patankar) of the first raters were close to the conservative estimate of PVS burden obtained as described above. 
Inter-rater reliability was high (ICC = 0.99, <0.001) as previously discussed10. The third rater counted all visible 
PVS in the slice with the highest number in T1W and T2W, including the very small ones discarded by the first 
raters. All raters were blind to each other.

Frangi filter. Frangi12 analyses the second order derivatives of an image I, defined in the Hessian matrix Hs(v) as:
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For a bright tubular structure in a 3D image we expect: |λ1| ≤ |λ2|, |λ3| and λ λ| | ∼ | |2 3 ; λ| | ∼ 01  and λ2, λ3 ≤ 0. 

For a dark structure λ2, λ3 ≥ 0 and the conditions in Eq. 2 should be reversed.
Given a set of scales s ∈ [smin, smax], the responses are combined as:

=F v F v( ) max ( ) (3)s
s

where smin and smax are the minimum and maximum scales at which relevant structures are expected to be found12.

Ordered Logit Model. An ordered logit model defines the relationship between an ordinal variable (y) 
which can vary between 0 and m(m ∈ N+), and the vector of independent variables (x) by using a latent continu-
ous variable ( ⁎y ) defined in an one-dimensional space characterized by threshold points (μ0, …, μm−1) as 
described in equation:
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where β and μi are parameters to be estimated, ε is the error component which has a logistic random distribution 
with expected value equal to 0 and variance equal to π/ 3 , that accounts for the measurement error. This model-
ling approach provides a relevant methodology for capturing the sources of influence (independent variables) 
that explain an ordinal variable (dependent variable) taking into account the measurement uncertainty of such 
data17.

Since ⁎y  is not a deterministic quantity, it is only possible to define the probability to belong to each class:
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where L is the logistic cumulative distribution function.
In our work, the ordinal variable (y) is the rating class (from 0 to 4) and the independent variable (x) is the 

number of PVS.
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Model Calibration. The ordered logit model has been calibrated by maximizing a likelihood function based 
on a synthetic dataset generated in 3 steps. In the first step 1000 numbers of PVS Count (PCi, i = 1, ..., 1000) have 
been generated using a log-normal distribution (see Fig. 3a), that reflects the observed PVS distribution in known 
datasets11. In the second step, the uncertainty has been simulated for each PCi casting a New value of PVS Count 
(NPCi) using a normal distribution with mean equal to PCi and standard deviation equal to one. Therefore, the 
probability that NPCi is included between PCi − 3 and PCi + 3 is 0.997. These values reflect our measurements 
uncertainty11. In the third step, a Rating Class (RCij) has been assigned to each generated NPCi.

Assuming m classes, the log-likelihood function can be written as:

∑∑μ β = = |
= =

LogL P y j NPC RC( , ) ( )
(7)i j

m

i ij
1

1000

1

where RCij is equal to one if the ith generated number belong to the jth rating class and it is equal to zero oth-
erwise. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm has been used to estimate the ordered logit 
parameters.

For the Wardlaw scale7, a rating class from 0 to 4, being 0(none), 1(1–10), 2(11–20), 3(21–40), 4(>40) PVS, 
has been assigned to each generated number. The estimated parameters are β = 0.514, μ0 = −2.840, μ1 = 5.708, 
μ2 = 10.497, μ3 = 20.040, and the model is illustrated in Fig. 3b.

For the Patankar scale10 a rating class from 0 to 4, being 0(none), 1(1–5), 2(6–10), 3(11–15), 4(>15) PVS, has 
been assigned to each generated number. The estimated parameters for the Patankar rating scale are β = 1.906, 
μ0 = 2.269, μ1 = 9.569, μ2 = 18.995, μ3 = 28.639, and the model is illustrated in Fig. 3c.

Image Preprocessing. Images were preprocessed to generate the Region-of-Interest (ROI) masks. A fuzzy 
C-means clustering algorithm was applied to T1 images22. This is an unsupervised iterative clustering technique 
that effectively assigns each voxel to one of 4 membership classes: background, Cerebrospinal Fluid (CSF), Gray 
Matter (GM), and White Matter (WM). After a series of morphological and thresholding operations, the CSF 
and GM re-labelled voxels were combined to generate the final CSFGM mask which was used for false positive 
minimization. To avoid PVS mislabelled as GM, an hole filling procedure was used. The Centrum Semiovale (CS) 
was automatically identified as the region of WM, superior to the lateral ventricles previously obtained using 
Lesion Explorer20. In this paper we focused on the CS rather than the Basal Ganglia (BG), due to the availability 
of these ROI masks.

Parameter Optimization. In order to apply the 3D Frangi filtering, the coregistered MRI volumes were 
first resliced to make 1 mm isotropic voxels using linear interpolation. Then volumes have been filtered according 
to Eqs (2) and (3) and voxels having F(v) larger than a threshold t were kept. The two segmentations from T1W 
and T2W modalities were combined using an AND operation. PVS were identified as the tubular structures with 
lengths between 3 and 50 mm3,11, using 3D connected component analysis with 18-neighbourhood rule. This 
provided the initial PVS binary masks. For each slice we calculated the PVS density as the area of the PVS mask 
divided by the area of the CS mask. We automatically selected the slice in the CS with highest density of PVS. 
This slice corresponded to the representative slice having the highest number of PVS selected by the radiologist 
for assessing the Wardlaw visual ratings7. The count of PVS in this slice was derived automatically with 2D con-
nected component labelling. Similarly, the total number of PVS in the entire CS was obtained with 3D connected 
component labelling. This count of PVS corresponded to the count performed by the radiologist for the Patankar 
ratings21.

A log-likelihood function has been defined to optimize the segmentation parameters: Frangi filter scales smin, 
smax and threshold t. In this work, we used the default configuration for the other Frangi filter parameters (α = 0.5, 
β = 0.5, c = 500), as in our previous work23 we noted that optimizing these parameters produced essentially sim-
ilar results, at the cost of a much higher computational time.

Figure 3. PVS distribution (a) of the synthetic dataset generated to calibrate the ordered logit model. Estimated 
ordered logit model for the Wardlaw (b) and the Patankar (c) rating scale.
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Based on the count of PVS (xi(smin, smax, t)) for each case i we obtained the probabilities of each case i to belong 
to the five rating classes (P(y = j|xi), j = 0, …, 4) using the ordered logit model. The PVS visual rating category 
provided by an expert radiologist was then used to select a probability for each i case (Pi ). The sum of the loga-
rithms of these selected probabilities is the log-likelihood function to maximize:

∑=
=

LogL s s t log P( , , ) ( )
(8)min max

i

N

i
1

where N is the number of cases.

Model Validation. Segmentation procedures are commonly evaluated by assessing the voxel-wise spatial 
agreement between two binary masks, one obtained by the automatic method and a manual one. In our case, the 
manual segmentation of PVS was not available, as it would have been a very tedious and time consuming task to 
manually annotate these tiny structures in a reasonable size dataset. Therefore the true number of PVS was also 
not available. Quantitative comparison with other methods9,11 was unfeasible as they have been applied to MR 
images having different resolution, acquired using different protocols in different cohorts.

The performance of the models was therefore evaluated comparing single-slice PVS automatic counting 
on segmented images vs validated visual ratings using Spearman’s ρ (statistical analysis were performed using 
MATLAB Robust correlation toolbox24). Correspondence of PVS total count and volume vs. visual ratings was 
also assessed to test generalizability.

Experiments and Results
For developing and optimizing the segmentation approach, the imaging datasets of 20 representative subjects 
were selected from a sample of the Sunnybrook Dementia Study (SDS)10. These 20 subjects had visual ratings 
assessed by three raters as summarized in Table 2.

The optimization procedure has been applied to T1W and T2W MRI sequences. Frangi filter scales (smin and 
smax) and two thresholds (t1 and t2, one for each modality) have been simultaneously optimized. The 2 binary 
masks obtained were combined using an AND operation. The range of the parameters that undergo the optimi-
zation process has been defined as in Table 3.

The high computational time needed to simultaneously optimize multiple parameters is a common drawback 
of optimization processes. Indeed, each log-likelihood function evaluation implies filtering all the training sam-
ples using Eq. (2), which may become critical in this 3D case. To keep a reasonable computational time, in this 
research contribution, we limited the search space to a subsets of parameters and roamed through this space using 
a systematic grid search.

Three sets of experiments were performed as indicated in Table 2. The symbol ⃝ indicates the scale/rater used 
for optimization, while ✓ specifies those used for validation.

For illustration Fig. 4a and b show the surface plots for the parameter optimization using the modified 
Wardlaw rating scale for a range of examined smin and smax scales and t1 values. Figure 4c show the trend of the 
log-likelihood function (LogL) for a range of examined threshold t2 values with the the best combination of smin, 
smax and t1. Figure 5 show the surface plots for the parameter optimization using the modified Patankar rating 
scale. The optimal parameters obtained with the 2 models are very similar (smin = 1.4, smax = 3.2, t1 = 0.96, t2 = 0.35 
for the first model, smin = 1.4, smax = 3.2, t1 = 0.95, t2 = 0.35 for the second one). From the plots we can observe that 
the most significant parameter of the Frangi filter is the minimum scale (smin). From these plots it is also clear that 
the Frangi filter was needed. Indeed for any combination of smin and smax the threshold values play a smaller role.

The optimal parameters obtained with the Wardlaw model using PVS assessed by the third rater were slightly 
different from the previous ones (smin = 0.2, smax = 2, t1 = 0.96, t2 = 0.1). The plots of the log-likelihood function 
are shown in Fig. 6. The trend of plots confirms the validity of the model demonstrating that the model was able 
to adapt to the rater, and finds the best parameters to segment the PVS accounted by that rater.

rater 1 rater 2 rater 3

modified Wardlaw ⃝ ✓ exp 1

modified Patankar ⃝ ✓ exp 2

original Wardlaw ⃝ exp 3

original Patankar ✓ exp 3

Table 2. Ratings available for the Sunnybrook Dementia Study (SDS): ⃝ optimization scale/rater, ✓ validation 
scale/rater.

smin smax t1 t2

min value 0.2 2.0 0.90 0.05

max value 2.0 4.0 0.99 0.50

increment 0.2 0.2 0.01 0.05

Table 3. Range of the segmentation parameters to optimize.
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Qualitative Evaluation. Magnified views of PVS segmentation using the threshold-based method previ-
ously described10 and the proposed method are shown in Fig. 7. It is clear that the proposed method detected 
most of the PVS, including the tiny ones, thanks to the enhancement of tubular structure performed by the Frangi 
filtering using the appropriate scale. The threshold based method missed them, as it was forced to be conservative 
in order to distinguish PVS from confounding tissue boundaries.

Examples of segmented PVS for two representative SDS cases having few and many PVS are shown in Figs 8 
and 9. For each case, we show T1W, T2W and the PVS overlay in red. Volume rendering of the segmented PVS for 
two cases having few and many PVS are shown in Fig. 10 for visual qualitative evaluation.

Quantitative Evaluation. When comparing single-slice PVS count obtained from segmented images 
with the modified Wardlaw and Patankar visual ratings of the second rater, a fair correlation was found for both 
methods (Spearman’s ρ = 0.58, p = 0.006 and ρ = 0.71, p = 0.0004 respectively). However, low and no significant 

Figure 4. Plots of the log-likelihood function (LogL) obtained using the ordered logit model shown in Fig. 3b 
estimated with the Wardlaw ratings for a range of examined smin (a) and smax (b) scales and thresholds t1 values, 
and threshold t2 (c) values with the best combination of smin, smax and t1.

Figure 5. Plots of the log-likelihood function (LogL) obtained using the ordered logit model shown in Fig. 3c 
estimated with the Patankar ratings for a range of examined smin (a) and smax (b) scales and thresholds t1 values, 
and threshold t2 (c) values with the best combination of smin, smax and t1.

Figure 6. Plots of the log-likelihood function (LogL) obtained using the ordered logit model shown in Fig. 3b 
estimated with the Wardlaw ratings for a range of examined smin (a) and smax (b) scales and thresholds t1 values, 
and threshold t2 (c) values with the best combination of smin, smax and t1.
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Figure 7. Visual comparison of the PVS segmentation overlaid on T1 (a) using the conservative threshold 
based10 method (b) and the proposed Frangi filtered (c) method.

Figure 8. Examples of the final PVS segmentation a case of SDS dataset having few PVS. Axial (top row) and 
sagittal (bottom) slice of T1W, T2W and PVS overlay (red) on T1W. For illustration, T1W is shown in its native 
space (256 × 256 × 124) and T2W is shown registered to T1W.

Figure 9. Examples of the final PVS segmentation for a case of SDS dataset having many PVS. Axial (top row) 
and sagittal (bottom) slice of T1W, T2W and PVS overlay (red) on T1W.
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correlation was found with total PVS number in volume in Centrum Semiovale, suggesting low generalizability. 
This replicates our previous analysis10.

For the segmentation results obtained with the optimal parameters of the model optimized with the original 
Wardlaw scale a stronger correlation between single-slice PVS count vs visual ratings was found (Spearman’s 
ρ = 0.74, p = 0.0002). In addition PVS total count and volume correlates with visual rating scores (Spearman’s 
ρ = 0.67, p = 0.001 and ρ = 0.53, p = 0.015, respectively).

Application to alternative acquisitions. To validate the new PVS segmentation method we applied it to 
MRI of cases of the Mild Stroke Study (MSS). Visual ratings using the Wardlaw rating7 were available for all the 
cases4.

Automatic brain, cerebrospinal fluid (CSF) and normal-appearing white matter extraction were performed 
on T1W MRI using optiBET25 and FSL-FAST26 respectively. All subcortical structures were segmented, also auto-
matically, using other tools from the FMRIB Software Library (FSL) and an age-relevant template as per the 
pipeline described elsewhere18. After identifying the lateral ventricles as the CSF-filled structures with boundaries 
with the subcortical structures, the CS was identified as the region of normal-appearing white matter, superior 
to the lateral ventricles, present in each of the cerebral hemispheres under the cerebral cortex. T1W sequence 
and CS region were linearly registered to the T2W-cube images27. This preprocessing differs from the one used 
for the SDS dataset due to the pipelines available at the two research groups10,18. The optimization procedure has 
been applied to T2-cube MRI sequences of 20 patients, and tested on 48 patients of the same study. The optimal 
parameters obtained for this dataset (smin = 0.4, smax = 3.6, t2 = 0.4) were different from those for the SDS dataset. 
This confirm the method was able to adapt the parameters to the different voxel-size.

PVS total count and volume correlates with visual rating scores (Spearman’s ρ = 0.47, p < 0.001 and ρ = 0.57, 
p < 0.001, respectively). Scatter plots of these associations are shown in Fig. 11a and b. Condensed raw PVS com-
putational count into the same categories of the visual rating scale has a similar distribution of the visual rating 
scores, as shown in Fig. 11c.

The results of this experiment suggest fair generalizability of the output of the segmentation method vs vali-
dated visual rating scores.

Discussion
The 3D Frangi filter enhances and captures the 3D geometrical shape of PVS, thus this method shows promise 
for identifying and quantifying PVS that run both longitudinally and transversally in the Centrum Semiovale, 
avoiding the double-counting limitations of slice-based methods. Centrum Semiovale is more difficult to rate 
visually than Basal Ganglia, so future application of this method to Basal Ganglia may be more straightforward. 
The ordered logit model could deal with the measurement uncertainty and the unequal class intervals of the 
rating scores.

One limitation of this method is that it relies on the image preprocessing step for the ROI masks. If the masks 
provided by this step are not accurate, the method can detect as PVS boundary of grey matter and gyri. Another 
limitation of this method is that it requires high resolution and quasi isotropic structural MRI. Very noisy images 
have been excluded for this study, otherwise any noise spot of tubular shape can be wrongly segmented as PVS. 
This can be overcome by a learning method. However, learning methods require GT, and not just visual ratings 
assessment.

The method is fully automatic and therefore free from inter- and intra-rater variability. However, much more 
testing is required in a wider range of subjects including those with high burden of other ageing and neuroin-
flammation features. Visual checking and editing is likely to be needed in complex cases, but this remains to be 
defined.

Figure 10. Volume rendering of segmented PVS (red) for two SDS cases having few (a) and many (b) PVS. PVS 
volumes overlayed onto a surface render of the brain.
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The quantitative assessment of PVS volume and count is more suitable for longitudinal studies than visual 
ratings, that tend to be susceptible to ceiling/flooring effects. The accurate segmentation of PVS will allow the 
analysis of their spatial distribution, orientation and density. The resulting PVS masks could be used, in combi-
nations with other quantitative sequences, to assess other tissue characteristics in adjacent tissue. Moreover, this 
method will enable the study of the spatial and volumetric relationships of PVS with other markers of SVD, e.g. 
acute lacunar infarcts, white matter hyperintensities, lacunes, and microbleeds. Additionally, this method shows 
promise for use in longitudinal studies where PVS burden can be assessed in relation to measures of cerebral 
blood brain barrier permeability, perfusion and cerebrovascular reactivity.

Conclusions
We presented an automatic method for 3D segmentation of PVS in conventional brain MRI. The novelty of this 
work is the fact that the ordered logit model allows use of the visual ratings for Frangi filter parameter optimiza-
tion in absence of alternative computational ground truth. The automatically segmented PVS count and volume 
agree with visual ratings. Quantitative measurements will better characterize the severity of PVS in ageing people 
and their associations with dementia, stroke and vascular diseases. This is the first work to propose a multicentre 
study of PVS segmentation. It shows excellent multi-centre reproducibility.
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