94 research outputs found

    Perspectives of general dental practitioners on preventive, patient-centred, and evidence-based oral healthcare—A Q-methodology study

    Get PDF
    Objective In the last 30 years, innovations in oral healthcare (OHC), such as advanced restorative techniques, shifts towards preventive and evidence-based care and changes in patients’ expectations, have increased the complexity of clinical decision-making in OHC. Little is known about the perspectives of general dental practitioners (GDPs) on the value of providing preventive, patient-centred and evidence-based OHC. This study aimed to explore the range of perspectives present amongst GDPs on OHC. Method Q-methodology was used to explore perspectives among 78 GDPs working in the Netherlands. Participants were asked to sort 50 statements representing three central domains in OHC: i.) restorative versus preventative OHC, ii.) disease-centred versus patient-centred OHC and iii.) expertise-based versus evidence-based OHC. Opinion statements about delivering OHC were formulated on the basis of published literature and input from OHC professionals. By-person factor analysis was used to reveal clusters of communality in statement rankings, which were interpreted and formed perspectives on OHC. Results Four perspectives, explaining 47% of variance, on OHC were identified amongst GDPs: ‘the patient-focused dentist who values prevention’, ‘the outcome-oriented dentist who values learning from colleagues’, ‘the team player with ultimate care responsibility’ and ‘the dentist who considers oral health the responsibility of the patient.’ Conclusion Q-methodology can be effectively used to describe the different perspectives that GDPs have on the challenges of preventive, patient-centred and evidence-based OHC. GDPs should not be seen as a homogenous group; rather they have different views and approaches to the care they provide. This has implications for health systems; awareness of the heterogeneity of practitioners’ perspectives can potentially be used to develop bespoke quality of care improvement strategies that constructively engage with each of these different groups

    Discovery of early-stage biomarkers for diabetic kidney disease using ms-based metabolomics (FinnDiane study)

    Get PDF
    Diabetic kidney disease (DKD) is a devastating complication that affects an estimated third of patients with type 1 diabetes mellitus (DM). There is no cure once the disease is diagnosed, but early treatment at a sub-clinical stage can prevent or at least halt the progression. DKD is clinically diagnosed as abnormally high urinary albumin excretion rate (AER). We hypothesize that subtle changes in the urine metabolome precede the clinically significant rise in AER. To test this, 52 type 1 diabetic patients were recruited by the FinnDiane study that had normal AER (normoalbuminuric). After an average of 5.5 years of follow-up half of the subjects (26) progressed from normal AER to microalbuminuria or DKD (macroalbuminuria), the other half remained normoalbuminuric. The objective of this study is to discover urinary biomarkers that differentiate the progressive form of albuminuria from non-progressive form of albuminuria in humans. Metabolite profiles of baseline 24 h urine samples were obtained by gas chromatography–mass spectrometry (GC–MS) and liquid chromatography–mass spectrometry (LC–MS) to detect potential early indicators of pathological changes. Multivariate logistic regression modeling of the metabolomics data resulted in a profile of metabolites that separated those patients that progressed from normoalbuminuric AER to microalbuminuric AER from those patients that maintained normoalbuminuric AER with an accuracy of 75% and a precision of 73%. As this data and samples are from an actual patient population and as such, gathered within a less controlled environment it is striking to see that within this profile a number of metabolites (identified as early indicators) have been associated with DKD already in literature, but also that new candidate biomarkers were found. The discriminating metabolites included acyl-carnitines, acyl-glycines and metabolites related to tryptophan metabolism. We found candidate biomarkers that were univariately significant different. This study demonstrates the potential of multivariate data analysis and metabolomics in the field of diabetic complications, and suggests several metabolic pathways relevant for further biological studies

    Flooding Greatly Affects the Diversity of Arbuscular Mycorrhizal Fungi Communities in the Roots of Wetland Plants

    Get PDF
    The communities of arbuscular mycorrhizal fungi (AMF) colonizing the roots of three mangrove species were characterized along a tidal gradient in a mangrove swamp. A fragment, designated SSU-ITS-LSU, including part of the small subunit (SSU), the entire internal transcribed spacer (ITS) and part of the large subunit (LSU) of rDNA from samples of AMF-colonized roots was amplified, cloned and sequenced using AMF-specific primers. Similar levels of AMF diversity to those observed in terrestrial ecosystems were detected in the roots, indicating that the communities of AMF in wetland ecosystems are not necessarily low in diversity. In total, 761 Glomeromycota sequences were obtained, which grouped, according to phylogenetic analysis using the SSU-ITS-LSU fragment, into 23 phylotypes, 22 of which belonged to Glomeraceae and one to Acaulosporaceae. The results indicate that flooding plays an important role in AMF diversity, and its effects appear to depend on the degree (duration) of flooding. Both host species and tide level affected community structure of AMF, indicating the presence of habitat and host species preferences

    Authenticity and drug resistance in a panel of acute lymphoblastic leukaemia cell lines

    Get PDF
    Cell lines are important models for drug resistance in acute lymphoblastic leukaemia (ALL), but are often criticised as being unrepresentative of primary disease. There are also doubts regarding the authenticity of many lines. We have characterised a panel of ALL cell lines for growth and drug resistance and compared data with that published for primary patient specimens. In contrast to the convention that cell lines are highly proliferative, those established in our laboratory grow at rates similar to estimates of leukaemic cells in vivo (doubling time 53–442 h). Authenticity was confirmed by genetic fingerprinting, which also demonstrated the potential stability of long-term cultures. In vitro glucocorticoid resistance correlated well with that measured ex vivo, but all lines were significantly more sensitive to vincristine than primary specimens. Sensitivity to methotrexate was inversely correlated to that of glucocorticoids and L-asparaginase, indicating possible reciprocity in resistance mechanisms. A cell line identified as highly methotrexate resistant (IC50 >8000-fold higher than other lines) was derived from a patient receiving escalating doses of the drug, indicating in vivo selection of resistance as a cause of relapse. Many of these lines are suitable as models to study naturally occurring resistance phenotypes in paediatric ALL

    The catatonic dilemma expanded

    Get PDF
    Catatonia is a common syndrome that was first described in the literature by Karl Kahlbaum in 1874. The literature is still developing and remains unclear on many issues, especially classification, diagnosis, and pathophysiology. Clinicians caring for psychiatric patients with catatonic syndromes continue to face many dilemmas in diagnosis and treatment. We discuss many of the common problems encountered in the care of a catatonic patient, and discuss each problem with a review of the literature. Focus is on practical aspects of classification, epidemiology, differential diagnosis, treatment, medical comorbidity, cognition, emotion, prognosis, and areas for future research in catatonic syndromes

    Biocontrol Potential of Forest Tree Endophytes

    Get PDF
    Peer reviewe

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations 1–6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories 7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
    corecore