228 research outputs found
HER2 testing in breast cancer: Opportunities and challenges
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results
Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against c-MET and VEGFR2
Contains fulltext :
118357.pdf (publisher's version ) (Open Access)Anti-angiogenic treatment of glioblastoma with Vascular Endothelial Growth Factor (VEGF)- or VEGF Receptor 2 (VEGFR2) inhibitors normalizes tumor vessels, resulting in a profound radiologic response and improved quality of life. This approach however does not halt tumor progression by diffuse infiltration, as this phenotype is less angiogenesis dependent. Combined inhibition of angiogenesis and diffuse infiltrative growth would therefore be a more effective treatment approach in these tumors. The HGF/c-MET axis is important in both angiogenesis and cell migration in several tumor types including glioma. We therefore analyzed the effects of the c-MET- and VEGFR2 tyrosine kinase inhibitor cabozantinib (XL184, Exelixis) on c-MET positive orthotopic E98 glioblastoma xenografts, which routinely present with angiogenesis-dependent areas of tumor growth, as well as diffuse infiltrative growth. In cultures of E98 cells, cabozantinib effectively inhibited c-MET phosphorylation, concomitant with inhibitory effects on AKT and ERK1/2 phosphorylation, and cell proliferation and migration. VEGFR2 activation in endothelial cells was also effectively inhibited . Treatment of BALB/c nu/nu mice carrying orthotopic E98 xenografts resulted in a significant increase in overall survival. Cabozantinib effectively inhibited angiogenesis, resulting in increased hypoxia in angiogenesis-dependent tumor areas, and induced vessel normalization. Yet, tumors ultimately escaped cabozantinib therapy by diffuse infiltrative outgrowth via vessel co-option. Of importance, in contrast to the results from experiments, blockade of c-MET activation was incomplete, possibly due to multiple factors including restoration of the blood-brain barrier resulting from cabozantinib-induced VEGFR2 inhibition. In conclusion, cabozantinib is a promising therapy for c-MET positive glioma, but improving delivery of the drug to the tumor and/or the surrounding tissue may be needed for full activity
Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer
Conceived and designed the experiments: XFL GAC RCB. Performed the
experiments: XFL MIA WM RS MSN SZ. Analyzed the data: XFL SR.
Contributed reagents/materials/analysis tools: YW GAC. Wrote the paper: XFL RCB.Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 39-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.This work was supported by the Anne and Henry Zarrow Foundation, kind gifts from Stuart and Gaye Lynn Zarrow and from Mrs. Delores Wilkenfeld, the Laura and John Arnold Foundation, the RGK Foundation, and the MD Anderson NCI CCSG P30 CA16672. G.A.C. is supported as a Fellow at the University of Texas MD Anderson Research Trust, as a University of Texas System Regents Research Scholar and by the CLL Global Research Foundation
The clinical and functional significance of c-Met in breast cancer: a review
This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.CMH-Y is funded by a Cancer Research UK Clinical Research Fellowship. JLJ is funded by the Breast Cancer Campaign Tissue Bank
Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells
Trastuzumab, a humanized antibody targeting HER2, exhibits remarkable therapeutic efficacy against HER2-positive breast and gastric cancers; however, acquired resistance presents a formidable obstacle to long-term tumor responses in the majority of patients. Here, we show the mechanism of resistance to trastuzumab in HER2-positive human cancer cells and explore the molecular sensitization by exogenous expression of HER2-extracellular domain (ECD) in HER2-negative or trastuzumab-resistant human cancer cells. We found that long-term exposure to trastuzumab induced resistance in HER2-positive cancer cells; HER2 expression was downregulated, and antibody-dependent cellular cytotoxicity (ADCC) activity was impaired. We next examined the hypothesis that trastuzumab-resistant cells could be re-sensitized by the transfer of non-functional HER2-ECD. Exogenous HER2-ECD expression induced by the stable transfection of a plasmid vector or infection with a replication-deficient adenovirus vector had no apparent effect on the signaling pathway, but strongly enhanced ADCC activity in low HER2-expressing or trastuzumab-resistant human cancer cells. Our data indicate that restoration of HER2-ECD expression sensitizes HER2-negative or HER2-downregulated human cancer cells to trastuzumab-mediated ADCC, an outcome that has important implications for the treatment of human cancers
Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology
The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials
Analysis of mtDNA sequence variants in colorectal adenomatous polyps
Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues) obtained from the southern regional Cooperative Human Tissue Network (CHTN) and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57%) variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17) in tubular and 57% (13/23) in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was observed at frequency of 57% (13/23) in villous adenomas only. Interestingly, variants A9006G and G9055A were absent in the villous tissue samples that were clinicopathological designated as "polyvillous adenomas". Our current data provide a basis for continued investigation of certain mtDNA variants as predictors of the three adenomatous polyps in a larger number of clinicopathological specimens
The efficacy of Herceptin therapies is influenced by the expression of other erbB receptors, their ligands and the activation of downstream signalling proteins
ErbB2 and EGFR are attractive oncology therapeutic targets as their overexpression in tumors predicts a poorer clinical outcome in a variety of epithelial malignancies. However, clinical results with therapeutic compounds targeting these receptors have been mixed. Therefore, there is a need for improved predictive biomarkers for these targeted therapeutics. In this study we analysed tissue microarrays of patients treated with combination chemotherapy and Herceptin for expression or phosphorylation of signalling proteins associated with erbB receptors to identify protein biomarkers that are predictive of breast cancer patient response. A comparison of expression or phosphorylation of these markers with patient outcome revealed that response to Herceptin depended not only on expression levels of erbB2 but also on expression of EGFR, expression of erbB ligands, expression of other receptors and phosphorylation of downstream proteins. Elucidating the biological effects of EGFR/erbB2 targeted therapeutics will enable patient tumor profiling to identify likely responders and the determination of biologically effective doses that allows chronic administration of these agents in order to maximise efficacy
ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly
<p>Abstract</p> <p>Background</p> <p>The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt) genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis.</p> <p>Results</p> <p>We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at <url>http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/</url>.</p> <p>Conclusions</p> <p>ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.</p
Somatic mutation and gain of copy number of PIK3CA in human breast cancer
INTRODUCTION: Phosphatidylinositol 3-kinases (PI3Ks) are a group of lipid kinases that regulate signaling pathways involved in cell proliferation, adhesion, survival, and motility. Even though PIK3CA amplification and somatic mutation have been reported previously in various kinds of human cancers, the genetic change in PIK3CA in human breast cancer has not been clearly identified. METHODS: Fifteen breast cancer cell lines and 92 primary breast tumors (33 with matched normal tissue) were used to check somatic mutation and gene copy number of PIK3CA. For the somatic mutation study, we specifically checked exons 1, 9, and 20, which have been reported to be hot spots in colon cancer. For the analysis of the gene copy number, we used quantitative real-time PCR and fluorescence in situ hybridization. We also treated several breast cancer cells with the PIK3CA inhibitor LY294002 and compared the apoptosis status in cells with and without PIK3CA mutation. RESULTS: We identified a 20.6% (19 of 92) and 33.3% (5 of 15) PIK3CA somatic mutation frequency in primary breast tumors and cell lines, respectively. We also found that 8.7% (8 of 92) of the tumors harbored a gain of PIK3CA gene copy number. Only four cases in this study contained both an increase in the gene copy number and a somatic mutation. In addition, mutation of PIK3CA correlated with the status of Akt phosphorylation in some breast cancer cells and inhibition of PIK3CA-induced increased apoptosis in breast cancer cells with PIK3CA mutation. CONCLUSION: Somatic mutation rather than a gain of gene copy number of PIK3CA is the frequent genetic alteration that contributes to human breast cancer progression. The frequent and clustered mutations within PIK3CA make it an attractive molecular marker for early detection and a promising therapeutic target in breast cancer
- …
